
European Journal of Learning on History and Social Sciences Volume 1, Issue 3 | 2024 

 https://journal.silkroad-science.com/index.php/ejheaa  - 25 

 

 

 

 

ejHEAA 
ISSN : 3032-1123 

 

https://doi.org/10.61796/ejheaa.v1i3.418 

DEVELOPING NOVEL IMAGING MODALITIES FOR 

EARLY CANCER DETECTION 

 

 
Shatha F. Murad 
Physiology Department, Medicine College, Al-Muthanna 
University, Al-Muthanna, Iraq 

 

 

Received: Jan 22, 2024; Accepted: Feb 29, 2024; Published: March 18, 2024; 

Abstract: An ever-expanding suite of cancer imaging tools is being created with the help of 

AI and ML. To design the best tool, it's important to include experts from other fields to 

determine the right use case, then test and refine the tool thoroughly before implementing it 

into healthcare systems. Showcasing significant advancements in the field, this 

interdisciplinary study. We go over the pros and downsides of using AI and ML for cancer 

imaging, some things to keep in mind when turning algorithms into tools for widespread use, 

and how to build an ecosystem that will help AI and ML expand in this field. 
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Introduction 

Machine learning (ML) and artificial intelligence (AI) are quickly changing the scientific world, 

and many areas of medicine are not immune. Artificial intelligence (AI) is the study and development 

of systems that can mimic human intelligence and behaviour; machine learning (ML) is a branch of 

AI that focuses on teaching computers to learn from data and then use that information to generate 

predictions or classifications, with or without human intervention. The advent of high speed 

computers in the last few years has sped up the progress in these fields. 

Digital medical imaging and other related fields are well-suited to be pioneers in the use of 

artificial intelligence and machine learning. The whole imaging process, including taking images, 

processing them, reporting on them, and sharing the findings, is carried out digitally, making it easier 

to gather data for AI and ML. Specifically, radiologists are expected to be the first to investigate and 

use new technologies in the field of cancer imaging since it accounts for a significant percentage of 

the workload in many departments. This is particularly true because these tasks can be monotonous 

(like reading through a mountain of normal studies to find abnormalities in cancer screening), taxing 

(like taking serial measurements of tumours), or repetitive (like outlining tumours for disease 

segmentation). In fact, the cancer imaging field is already home to a variety of commercial solutions 

that strive to streamline processes, cut down on mistakes, and boost diagnostic accuracy. 

Problematically, many technical solutions are being created independently, which means they 

may not be able to make it into normal clinical use. These may have been hindered because there 

were few chances for experts in the field to collaborate and gain a better understanding of the clinical 

and data science landscape. This would have helped them identify the opportunities, risks, needs, and 
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challenges associated with developing, testing, and adopting such tools. In order to promote 

innovations and advancements, it is necessary to foster collaborative interdisciplinary ecosystems, 

which may include commercial partners when suitable. 

Results and Discussion 

Here, we lay out the necessary AI and ML methods and emphasise the most promising avenues 

for applying these technologies to cancer imaging. We will go over the technical, professional, and 

clinical hurdles that come with using AI and ML for cancer imaging. From historical examples, we 

extrapolate the necessary technological and infrastructural advancements for artificial intelligence 

(AI) in cancer imaging, which will pave the way for the incorporation of ML and AI into healthcare 

systems and the proper education of the next generation of workers. 

Imaging data in medicine: Radiomics. The majority of medical image analysis is still done by 

trained radiologists. These professionals can visually detect illness, tumour borders, treatment 

efficacy, and recurrence. When evaluating AI and ML approaches, these human talents are often 

utilised as reference standards. Nevertheless, there is a growing fascination in probing the constituent 

parts of medical images—the pixels and voxels—as imaging data. These parts are amenable to 

computational analysis, which might lead to the discovery of objective mathematical patterns 

associated with disease behaviour or outcomes. 

The field known as "radiomics" uses computers to analyse specific areas inside medical 

pictures. The images can be two-dimensional, like a 2D X-ray or a three-dimensional computed 

tomography (CT) scan, or four-dimensional, like an ultrasound. They can also be scalar- or vector-

valued, like a phase-contrast magnetic resonance imaging (MRI) scan, showing a relationship 

between the measured signal and a mathematical vector function, respectively. Using algorithms that 

can detect patterns in images—often beyond what the human eye can perceive—and capitalising on 

them to generate forecasts and so assist in clinical decision-making is the primary objective of 

radiomics. Many imaging characteristics are often produced by computerised image processing. To 

construct a mathematical model that can address the pertinent clinical question—the so-called ground 

truth variable—it is necessary to choose characteristics that are non-redundant, stable, and relevant. 

Figure 1 shows the process of choosing and evaluating radiomics characteristics to see whether they 

can differentiate between benign and malignant breast tumours in a given use-case. An further 

development in the field is the rise of radiogenomics, which combines genomics with radiomics to 

help in illness management via integrated diagnostics3-4   

Consider a volumetric chest CT scan that includes a tumour, such as a lung nodule. In this case, 

the data set might be used for radiomics analysis. The normal workflow would include two steps: (1) 

identifying the cancer within the image; and (2) annotating the tumour with semantic attributes, 

typically by experienced radiologists.5. Third, the tumour must be outline or segmented. 4. Next, the 

features of the tumour, such as its size, mean intensity, image texture, shape, and margin sharpness, 

must be computed. This can be done manually or with the use of automated learning. 5. Finally, a 

classifier must be built to use these computed features to predict a clinical state.likelihood of a certain 

gene mutation, therapeutic efficacy, or total survival. 10,11                                                                                                                                                                                                            
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In order to make pipeline data analysis easier, many organisations are developing radiomics 

processing tools. The Quantitative Image Feature Pipeline12 was built at Stanford University and 

includes an extensible library of algorithms for quantitative imaging feature extraction and predictive 

modelling. It can characterise the imaging phenotype comprehensively and provides cloud-based 

software for making and running pipelines that generate and predict quantitative image features. Users 

can also use and compare image features to predict clinical and molecular features. Users may also 

include their own algorithms into a customisable process by uploading them as Docker containers 

13.applied to cancer imaging using AI and ML methods. To guarantee data conformance or 

consistency, cancer imaging pre-processes and transforms patient pictures before using them as inputs 

to build ML algorithms and models. Whether the characteristics are specified by radiologists or 

generated from mathematics, these pre-processing procedures are always employed. Making sure the 

pictures have the same pixel-dimensions and image-section thickness is part of this process. To 

summarise, ML models and algorithms take in imaging data as input, create a map of the data, and 

then develop a mathematical function—either basic or complex—that is associated with the output, 

which might be anything from a clinical or scientific observation to the goal itself. When building or 

training an ML algorithm, it is not necessary to utilise ground truth variables. These are reference 

findings that have been verified by domain experts or other methods, such as pathology, laboratory 

testing, or clinical follow-up. Standard procedure for machine learning algorithms often involves 

creating a training dataset, refining it using a validation dataset, and then testing it on an independent 

test dataset, preferably one from a separate university, to see how well it performs. 

When it comes to imaging research, some ML models are much more popular than others. The 

most popular version is the predictive model, which attempts to forecast y by learning the f(x) 

function. This assumes on which x is dependent, f is the mathematical function, and "y" stands for 

"target" or "output.". It is possible to try to establish a relationship between the input data x (such as 

an imaging characteristic) and the output y (such as gene expression) in exploratory models. 

Multiple regression models may be used when dealing with continuous data. Some examples 

are Linear, Cox (Proportional Hazards), Regression Trees, Lasso, Ridge, ElasticNet, and others 14,15. 

Many classification methods may be used for discrete variables, including Naïve Bayes, Support 

Vector Intelligent systems, Decision Trees, Random Forests, and KNN (k-nearest neighbours) 

Generalised Linear methods, Bagging, and others. The use of these models has the potential to 

improve cancer detection, illness categorization and stratification, treatment efficacy, and overall 

health outcomes. 

Data accessibility, computing power of machines, and further algorithm improvements all 

impact an ML algorithm's performance. Size of the data could dictate the ML method used. Classical 

ML methods like Naïve Bayes, logistic regression, Typically, smaller datasets are used while working 

with decision trees and support vector machines. such as less than 1000 patients, exams, or 

photographs, depending on the use case. Though they are more computationally intensive, more 

complicated ML models—like convolutional neural networks (CNN)—may be better with more 

datasets since they are very efficient at learning straight from pictures. Deep learning, of which CNN 

are a subset, is a category of machine learning techniques that use artificial neural networks. In order 

to solve issues, artificial neural networks mimic the connections of neurons, taking their cue from the 
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way neurons are organised in the brain. Some ML algorithms are supervised, meaning they are trained 

on data that already has labels attached to it. 

 

 

Figure 1: Radiomics feature selection. An example of a model classifier in action is shown here in its 

ability in order to differentiate between benign and cancerous breast tumours using imaging 

techniques. A recursive feature removal and reduction approach was used after a huge number of 

radiomic characteristics were calculated. Subsequently, variables with zero or near-zero variance, as 

well as those that were highly linked, were eliminated.. The model's performance, as seen above, 

identifies eleven characteristics that have reached saturation. The red curve on the left side shows the 

relationship between various characteristics and accuracy, as the blue line moves on the right side 

shows the relationship between the number of features and the error function of the model. By 

reducing the error function, this sample demonstrates great accuracy utilising eleven imaging 

characteristics. 

On one extreme, you have supervised learning, where an algorithm is told what to do; on the other, 

you have unsupervised learning, where the programme learns from the data itself. These later ones 

are linked to more advanced CNN algorithms that can automatically find patterns in imaging data.  

The interest of internet developers in automatically identifying things on photographic pictures and 

the massive dataset of ImageNet18 have evolved from the computer vision area as the driving forces 

behind CNNs. 

Images have been the inspiration for several highly effective 

ML architectures, such as Three versions of Inception, AlexNet, VGG-16, and 19. Several of these 

have found usage in medical applications via transfer learning3, which is adapting a pretrained 

architecture trained on ImageNet to medical imaging and making it work better for that specific task. 

The number of features obtained by convolutional neural networks (CNNs) often exceeds the quantity 

of data points or samples in ML-based cancer imaging. 
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Figure 2 shows possible applications of AI and ML in cancer imaging as they pertain to a cancer 

patient's journey. The development of cancer presenting symptoms in an otherwise asymptomatic 

patient is a common occurrence that often results in a cancer diagnosis. Treatment for cancer, which 

may result in a successful response or even a cure, begins when the illness has been appropriately 

staged. But some people will progress during therapy or have a recurrence, necessitating more 

treatment. Some patients may sadly pass away as a result of their illness. Imaging AI and ML have 

many possible applications, as described and illustrated in the book, throughout the cancer journey. 

  The second causes overfitting, in which the model becomes well-suited to the training dataset at the 

expense of its performance on the dataset that was used for testing. To minimise or reduce the impact 

of overfitting, some popular methods include: (a) training the algorithm with more data, (b) using 

feature selection to reduce the initial features' dimensionality or number, and/or (d) employing a 

combination of learning techniques to expand the dataset, which means training the algorithm at 

multiple sites or institutions. Using methods such as k-fold cross-validation, which incorporates 

several sub-samples of the dataset, is another prevalent approach. Concerns about patient privacy and 

reluctance to share data persist despite the fact that more and more healthcare organisations are storing 

and using data on the cloud and other central locations. Due to these problems, methods of distributed 

or federated learning have gained popularity 19,20. Federated learning is an approach to machine 

learning that uses distributed learning rather than a central repository. Instead, models are sent to 

several institutions and trained using data specific to each site. The only data that is shared across 

these institutions is the model's weights. In order to make algorithms more trustworthy, there is 

currently a lot of focus on making them explainable and interpretable. While clinical users may not 

be too concerned with the nuts and bolts of ML models, they are curious in how the models arrive at 

their predictions and outputs, both for whole patient cohorts and for individual patients. 

Clinical opportunities for AI/ML in cancer imaging. There are a number of applications for machine 

learning that might lead to significant improvements in cancer imaging. Figure 2 shows the usual 

course of a cancer patient's clinical care and draws attention to many important areas of imaging 

where AI systems might have a beneficial effect 22. We provide a more detailed overview of a few 

of them here. 
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  Evaluation of risk: In order to make the most efficient use of cancer imaging technology, we must 

prioritise patients who pose the highest risk. In order to determine the likelihood of getting cancer, 

breast density testing is mandated in several US states. It is possible to make it such that individuals 

undergoing breast cancer screening get consistent density notifications by deep learning algorithms, 

which have shown excellent accuracy in breast density classification 23,24. Because of the 

importance of breast 

  density assessment is linked to large interobserver differences (6-85%) 25. Advancements in 

artificial intelligence (AI) have the potential to revolutionise risk modelling. When compared to 

typical breast cancer risk models on its own, a deep learning model that included both mammographic 

characteristics and traditional risk variables to identify high-risk individuals outperformed them 

26,27. Using mammographic breast density as assessed to an AI programme, a junior radiologist, and 

an experienced radiologist, a very excellent agreement was reported for breast cancer risk evaluation 

not long ago (28). 

Both cancer screening and cancer detection have attracted a lot of attention from the artificial 

intelligence community. Lung cancer (29–31 cases) and breast cancer (32–36 cases) are two examples 

of illnesses with active screening programmes that have evaluated AI systems. Research on breast 

cancer has revealed that AI algorithms can perform as well as human experts in reading 

mammograms, rank images in order of importance, and even be acceptable to women who undergo 

the screening process. But there isn't enough data from actual use cases to suggest widespread use of 

AI-based breast screening systems just yet. When directed screening tests are  

neither feasible or cost-effective, opportunistic screening—which involves detecting anomalies in 

examinations performed for other purposes—may provide opportunities to discover more 

malignancies. This is in addition to systematic screening. Patients getting low-dose CT for lung cancer 

screening, for instance, may have their breast density evaluated on CT39 to determine their risk of 

breast cancer using the same pictures.  

Artificial intelligence algorithms can now identify lung nodules, classify them, measure them, and 

even forecast whether they are cancerous. Using a deep learning model for lung nodule diagnosis and 

management enhanced radiologists' performance and decreased reading time 40. Without a doubt, 

further tumour types will be added to the list of possible applications for AI in cancer diagnosis.  

Machine learning (ML) systems provide ways to improve the classification of imaging results in the 

field of cancer detection and classification. Malignant brain tumours may arise from a variety of 

sources and have varying outcomes; however, owing to the heterogeneity of the illness, tissue 

collection can be invasive and results in inaccurate characterization. Research has shown that AI has 

the ability to detect and categorise significant brain tumours, such as acoustic neuromas, pituitary 

adenoma, meningiomas, cerebral metastases, low grade gliomas, and acoustic neuromas, while also 

distinguishing them from healthy tissues 41–44. Another new use for this field is the categorization 

of cystic pancreatic lesions, which is useful because visually differentiating between intraductal 

papillary mucinous neoplasms, mucinous cystic neoplasms, and serous cystic neoplasms can be 

difficult (45–47) and has different consequences. 
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Forecasting how a patient will react to a therapy is possible with the integration of machine learning 

and radiomics. Included in this category are tasks such as anticipating how nasopharyngeal carcinoma 

will react to intensity-modulated radiation therapy (IMRT) 48, the response of non-small cell lung 

cancer to neoadjuvant chemotherapy (NCLC)49, and how rectal, oesophageal, and breast cancers will 

react to neoadjuvant treatment (NCT) 55,56. Despite its great potential, radiomics has yet to provide 

findings that can be applied to a broader population, which is restricting its use in clinical practice at 

the moment. 

 For the sake of patient care, quality improvement, and education, it is crucial to correlate radiological 

data with information found in pathology reports. To further investigate cohort-specific populations, 

it is feasible to use natural language processing methods to sift text-based radiology 57 and pathology 

58 reports for important discoveries. Radiologists may be alerted to possible study follow-up misses 

using a radiology follow-up tracking engine 59 that applies a natural language processing technique 

to organ-level categorization of free-text pathology reports. Opportunities to integrate radiological 

pictures with anatomical pathological images also exist 60,61. 

Segmentation of diseases: Segmentation, or the outlining of diseases, is essential to many research in 

artificial intelligence, machine learning, and radiomics essential for producing tumour outlines for 

radiation planning 62–64 and for deriving quantitative tumour data, such as tumour diameters. 

Clinicians may learn more about cancer response to therapy by registration of segmentations 

throughout time-series. Automatic disease segmentation utilising AI models has the potential to 

decrease the substantial inter-reader variability 65 that may result from manually tracing lesion 

boundaries. An expert radiologist should verify the final AI segmentation result, even at the point 

when DNNs are powerful enough to separate lesions.                           

Deep learning techniques have shown to be very effective when there is an abundance of data, which 

likely explains why some picture and illness categories have pretty well-developed segmentation 

algorithms. The data density is significantly higher for segmentation problems compared to 

classification problems typically considered at the per-patient level, such as in radiomics. This is 

because lesions or entire organs consist of hundreds or thousands of voxels, the smallest picture 

element, defined by the spatial resolution of the acquisition and the thickness of the image section. 

Disease segmentation allows for the computation of radiomic features from the entire tumour. 

However, a more sophisticated approach involves extracting radiomic features from habitats, which 

are areas within tumours that are physiologically distinct, as inferred by imaging characteristics (e.g., 

based on blood flow, cell density, necrosis) 66,67. 

Potentially vulnerable organ segmentation: The goal of radiation treatment is to kill tumours as much 

as possible while avoiding healthy tissue. On the other hand, normal tissues and organs are commonly 

found near malignancies, making them organs-at-risk to the potentially harmful scattering effects of 

radiation treatment. To ensure that radiation does not harm nearby normal tissues, organs-at-risk 

segmentation is an essential part of the treatment process. When treating pelvic cancers 68,69, for 

instance, All of the usual organs that might be affected include the bladder, bowels, rectum, and hip 

joints. In addition to head and neck cancers 70,71, breast cancers 72, and non-small cell lung cancers 

73,74, ML has also been successfully employed in organs-at-risk segmentation for radiation planning 

Among the many expanding uses of AI and ML in the imaging field, image optimisation is on the 
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rise, and it's not only in cancer imaging. An oncological body scan using magnetic resonance imaging 

(MRI) might take anywhere from thirty to sixty minutes. Both to enhance picture quality (e.g., to 

create so-called super-resolution MRI images76) and to speed up image capture and/or reconstruction 

(i.e., to make the examination faster)75 are seeing increased use of AI and ML approaches. Reducing 

the amount of time it takes to get an MRI without compromising picture quality will help health 

organisations overcome MRI capacity challenges and increase patient throughput.                                                                      

Additional applications: radiologists are looking at natural language processing to help them with 

repetitious work and to create automated reports. Another possible application of natural language 

processing as a communication tool for doctors receiving radiology reports is to alert them to 

actionable reports. This way, significant results may be emphasised to referrers in a timely manner. 

How well AI and ML perform in the various use cases we've covered so far depends on factors like 

project complexity, data availability and quality, mathematical model sophistication, and algorithmic 

real-world testing. There is ongoing investigation and development in some of these use cases. Still, 

not all algorithms under development or testing end up being useful therapeutic tools. To allow the 

use of AI and ML in cancer imaging, it is crucial to identify the obstacles and limitations that need to 

be overcome. 

Obstacles to using AI and ML in cancer MRI. The field of cancer imaging presents both promising 

potential and formidable obstacles for the advancement of artificial intelligence and machine learning. 

The following are some of the major clinical, professional, and technological obstacles that will be 

faced when beneficial mathematical algorithms are translated into more widespread clinical practice 

for the benefit of patients. 

Clinical challenges. Developing an AI or ML technology that solves a critical clinical problem or 

answer a critical clinical issue is a top priority. Developers should thus be well-versed in both the 

clinical setting and the expected implementation environment of the AI tool. For this reason, it is 

common practice to consult with doctors when creating the tool. 

Data comes in from many directions in the clinical realm. Clinicians are producing more and more 

biomedical data as a result of developments in areas such as electronic health records, advances in 

multi-omics technology (including genomics, proteomics, and molecular pathology), and multi-

modal imaging. Therefore, successfully involving several disciplines is essential. Artificial 

intelligence and machine learning have the ability to combine this varied and complicated data in 

order to bolster customised medicine 79. On the other hand, data-driven and model-based 

computational approaches face additional obstacles when dealing with datasets of this size. 

By using advanced ML and computational intelligence, AI has the ability to completely transform the 

field of cancer image analysis. Advanced AI techniques have the potential to revolutionise healthcare 

by making it more patient-centered rather than organization-centric. This might lead to more 

personalised solutions, lower healthcare costs, and improved clinical results. Another benefit of 

computerised oncological image analysis is the improvement of decision support tools and the 

acceleration of the shift from qualitative to quantitative  
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image interpretation and assessment via the use of automated methods for earlier detection and 

enhanced lesion characterization. There are significant problems within this paradigm that can be 

solved with improved AI and ML. Sufficiently effective prognostic and predictive biomarkers, 

computer-assisted diagnosis that is both accurate and repeatable, and reliable tumour segmentation 

are all necessities in this field. Measuring and tracking intra- and inter-tumoural heterogeneity as the 

illness progresses is going to be a real challenge 82,83. To do this, we need longitudinal imaging 

datasets of excellent quality.  

Precision oncology—the practice of tailoring cancer treatment to each individual patient by analysing 

their tumor's genetic profile—is one field that may benefit greatly from the use of AI and ML. With 

the help of integrated diagnostics 84,85—for example, radiogenomics—which integrates studies of 

radiomics and genomics—precision oncology has a better chance of developing powerful 

computational tools for studying cancer biology and forecasting treatment response (Fig. 5). To 

address concerns about privacy and cyber-security and to facilitate ongoing learning, the approach 

comprises collecting structured data on a massive scale from a variety of sources. The current biggest 

obstacle is getting new AI technologies into clinical practice without first conducting rigorous, well-

validated clinical trials. Important for the development and implementation of AI methods in 

precision oncology86, this holds great promise for the future of AI in oncology as a tool for more 

precise patient selection and, ultimately, lower treatment costs. 

Difficulties in the workplace. Professional hurdles, in addition to therapeutic ones, will certainly 

influence how ML is developed and used in cancer imaging. Factors that encourage the growth of 

ML include the ever-increasing need for imaging services, which, when combined with both short-

term and long-term shortages in the workforce, may cause radiologist burnout and stress. Departments 

should think about modernising or reworking their IT system and process so they can test and use ML 

and AI technologies as they become available. Additionally, there is the matter of how the radiology 

staff views the possible benefits and risks of using AI and ML in healthcare settings. 

  An online survey was carried out with 569 radiologists from 35 different countries in order to gather 

information for a 2019 is organising a conference in collaboration with the International Cancer 

Imaging Society and the Champalimaud Foundation (Lisbon) on the use of AI and ML in cancer 

imaging. More over 60% thought the advantages of AI were greater than the disadvantages 

(Supplementary Note). The majority of people who took the survey saw AI in radiology as having 

mostly positive effects, such as (1) notifying radiologists of abnormal findings, (2) making work more 

efficient, (3) suggesting diagnoses when the radiologist is unclear, (4) acknowledging that the 

radiologist should be held accountable for mistakes, and (5) modifying the service model through 

increased patient-provider communication. The majority of responders were of the opinion that 

radiologist jobs would not be filled by AI and ML. More than 70% of respondents said that we should 

invest in education, test new tools, support large-scale picture and annotation curation, and collaborate 

with commercial vendors to build AI solutions that enhance workflow in order to be ready for the 

coming of AI.  

Among the most pressing needs and topics for future AI tool development, the study highlighted the 

following: (1) the development of systems that can automatically monitor tumours over time to gauge 

treatment efficacy; (2) the enhancement of fully or partially automated 
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In the future, precision oncology may be able to integrate data from many omics sources to monitor 

tumour volume, geographic and temporal phenotypic variability (Fig. 5). When each hospital or clinic 

obtains and saves its own medical imaging data (in a local PACS), this architecture would make it 

possible to handle data from more than one institution. In order to conduct quantitative studies, a 

gateway for radiomics is used to interface with an external, reputable AI/ML centre that enables 

continuous learning. This centre is then asked to automate the segmentation of tumours in real-time. 

In order to address concerns about privacy and cyber-security, the medical photographs that leave the 

hospital are anonymized. Radiomic feature extraction and analysis are performed using the 

segmentation findings, which serve as virtual biopsies. In order to find correlations with clinical and 

multi-omics data, statistical imaging findings are combined among other sources of biological data. 

As precision oncology develops, this method has the potential to enhance cancer treatment in clinical 

practice by creating trustworthy diagnostic and prognostic tools for interdisciplinary team meetings.  

A system tools for tumour segmentation; (3) tools for proforma reporting that enable prospective 

annotation of image data; (4) tools for concurrent identification of normal studies that allow 

radiologists to concentrate on abnormal examinations; and (5) tools for tumour identification system-

wide. 

Further, in order to provide future AI-enabled practice, imaging departments must prepare for the 

workforce requirements. A deeper familiarity with artificial intelligence (AI), particularly its 

applications in workflow management and image collection, will be necessary for radiographers and 

technicians. Building a platform for in-line development or testing of AI tools, a place to interact with 

and annotate data on images, as well as carefully selected images and data archives are all essential 

tasks for an informatics team.  

Difficulties related to technology. Numerous cutting-edge deep learning-based AI strategies are 

accomplishing remarkable results. Their success may be attributed to two factors: the accessibility of 

massively indexed datasets annotated with precision and the robust self-learning capabilities of deep 

ML models. The need for subject specialists' knowledge88 makes the task of obtaining such correct 

annotations costly and time-consuming in biomedical research. Consequently, there has been a lot of 

interest in ML models that can handle imperfect annotations and lack of strong supervision. This 
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includes things like image-level labels instead of feature-specific labels, or bounding boxes that cover 

an area of interest instead of exact outlining. One possible solution to the problems of data scarcity 

and heterogeneity is the creation of massive image databases that can be mined. Data quality and 

variety, in addition to sample availability, should be taken into account while gathering and creating 

standardised datasets. By employing transfer learning and domain adaption strategies, it may be 

possible to enhance the capacity to generalise across investigational settings. 

It is difficult to design and find trustworthy AI imaging research. The findings of these AI models are 

very doubtful because of the small sample sizes (as low as 10 patients) used in these studies. This is 

because of the risk of overfitting, which reduces the generalizability of the results. As a general rule, 

while dealing with binominal classification jobs in radiomics, it is recommended to recruit 10-15 

patients for each characteristic that is part of the final radiomics signature 90. The so-called test set, 

a dataset that does not include any instances used in training or adjusting the model, should be used 

to estimate performance. In addition to internal validation, external validation, which involves testing 

how well the model performed on many datasets collected from diverse imaging modalities or 

geographic patient populations, is necessary to assess the model's generalizability. Validating models 

on an external patient cohort that is 25-40% larger than the training sample is considered ideal. 

When it comes to more complicated clinical concerns like illness risk assessment and prediction, 

integrative models that include data from environmental, social, and genetic sources are becoming 

more popular. There is a clear need for more standardisation, particularly in data gathering, to enable 

various use cases of AI 91, as data sparsity and non-standardized treatment techniques across 

institutions continue to be obstacles to constructing integrative ML models. 

One way to get real-world data for evidence-generating research is to combine photographs with 

clinical and molecular data. There are great potential to test and assess the performance of AI 

technologies using retrospective data from imaging biobanks and repositories. If the degree of 

variability is too high and might compromise the results of a multicenter study, harmonisation 

techniques like ComBat 92 could be explored to standardise the imaging characteristics. 

Box 1 | Data cleansing and analysis are critical steps in making AI and ML more reliable and 

applicable to cancer imaging. 

1. Participant recruitment criteria 

Consistency in the inclusion of the study population based on the presenting symptoms, results from 

previous tests, defining the appropriate index tests or by the selected reference standard 

2. Participant sampling 

To avoid or control bias in participant sampling, considerations could include the use of consecutive 

series of participants, use of well-defined selected data silos, clear and well-defined selection criteria; 

as well as adjusting for possible confounding variables 

3. Data collection 
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What data to collect and how this is performed should be planned before participant recruitment and 

sampling. Where appropriate, target trial emulation may be undertaken, which is the application of 

design principles from randomized trials to the analysis of observational data, which may improve 

the quality of the observations. 

4. Reference standard 

The rationale and description of the reference standard should be clear 

5. Technical specifications of materials and methods 

Aspects of technical specifications should be well defined. These include how and when images and 

measurements were taken; the definition of units; cut-off thresholds; defined results categories (of 

both the index tests and the reference standard); description of the number, training, and expertise of 

persons executing and reading (original or new reporting); index tests and the reference standard; and 

blindness aspects (if the readers of the index tests and the reference standard were masked to other 

test results) 

performance and applicability of the model. Radiologists may take the lead in the area by advocating 

observational in silico investigations and making sure that all important steps are followed, from data 

collection to analysis, to ensure that the findings can be reproduced. According to Box 1 93, the most 

important factors are as follows. 

Radiomic computation and the use of radiomic features for prognostication, assessment of therapy 

response, and diagnosis of molecular phenotype are not without their difficulties in the context of 

radiomics. These difficulties stem, in part, from the fact that Image capture and reconstruction 

methods (94–98) and user and software-specific segmentation variations (99,100) greatly impact the 

radiomic feature values. If radiomics is going to reach its maximum potential, it is necessary to solve 

these concerns, enhance algorithms, and gain community consensus on the usage of open-source 

software, phantoms, and standardised approaches101. 

Increasing model performance—perhaps at the cost of explain ability—has been the primary goal of 

AI enthusiasts, which may explain why there has been little progress in translating AI models to 

clinical use. An example that comes to mind deep neural networks use a black-box method. While 

these networks provide impressive results, it may be difficult to verify their reliability, which hinders 

their clinical acceptance. Prioritising AI solutions with substantial therapeutic value may potentially 

be hindered by a lack of multi-disciplinary interaction. Assuming AI models do not reveal how they 

arrive at a particular choice, There can be reluctance among healthcare professionals to include AI 

into routine clinical procedures. 

The AI community has recently come to terms with this restriction and is focusing on creating 

explainable AI. Concerns about patient safety are delicately touched by the explain ability of AI 

models, particularly in clinical decision-support systems 102. Machine learning models are prone to 

patient selection bias, which causes them to underperform and make incorrect predictions in future 

unknown situations, due to the fact that most AI models are trained using historical, observational 

data. Consequently, domain experts should consistently double-check AI models' predictions and the 
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logic behind them. Only when the models are intentionally somewhat open can the second goal be 

achieved. Strengthening AI models is expected to be achieved by including domain experts into model 

development. And repeatable and contribute to establishing credibility among consumers. It is 

essential to assess the AI solution's total performance in the therapeutic route environment, not just 

its accuracy. As part of this process, we would put these models through their paces in the real world 

to see how well they work, how reliable they are, and how much they cost. 

      What we've learned from the past: using CAD to diagnose breast cancer. While machine learning 

and artificial intelligence hold great promise for the imaging field, it is important to remember the 

mistakes made in the past when trying to use computational methods to cancer imaging (e.g., 

computer-assisted breast cancer detection). Beginning in the mid-1980s, researchers began to develop 

algorithms that could automatically identify masses and calcifications on mammograms. In 1998, the 

Food and Drug Administration approved the first commercial computer-aided detection (CAD) 

system for mammography, which was originally based on digital film. The use of CAD in clinical 

practice was made possible by the shift to digital mammography. Approximately 74% of 

mammography interpretations in the US used CAD by 2010106, thanks to the encouraging early 

findings from clinical studies and the implementation of Medicare funding coverage for CAD in the 

US. But even while commercial CAD systems' stand-alone sensitivity in enriched reader experiments 

is typically better than radiologists', The diagnosis accuracy of screening mammography did not 

significantly increase with the deployment of CAD, according to major retrospective registry-based 

studies 106,107, and 108.. Present commercial CAD systems provide an average of 1-2 false positive 

prompts every instance, which is likely to account for this disheartening outcome. Because of this 

false-positive prompt rate, the positive predictive value of a CAD prompt is less than 1% in an 

environment with low prevalence screening. There will be a propensity for radiologists to disregard 

the computer-generated prompts entirely, as they will have to disregard over 99% of them in order to 

locate the one that indicates malignancy. Traditional feature-based CAD systems have certain limits, 

but modern deep learning algorithms may be able to overcome some of those restrictions. Because 

deep learning algorithms don't need to replicate the radiologist's reading style, unsupervised training 

on massive datasets including millions of mammographic pictures may be able to compensate for 

human observers' limitations. 
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Fig. 6 Built entirely on open-source software, the Cancer Imaging Archive (TCIA) is a network of 

networks. Additionally, TCIA is a collection of services that aim to gather and organise high-quality 

clinical data and images relevant to cancer, and then make it accessible to the public. ("VMs" stands 

for "virtual machines"). 

109 mammograms. On the other hand, algorithms110 will have more work to do as detecting tasks 

become more automated; they may even have to establish that there is a positive impact on patient 

outcomes beyond just diagnosis accuracy. 

Therefore, based on the important takeaways from past CAD applications in breast cancer, the next 

AI tool for cancer detection needs to have a high positive predictive value, meaning it will produce 

less cases of false positives in areas where the illness is not common, and high diagnostic accuracy in 

general. In order to determine the health benefits and broader advantages of these technologies, it is 

necessary to evaluate them in real-world settings beyond only their diagnostic performance. 

Advancements in technology, infrastructure, and expertise are necessary for the use of artificial 

intelligence and machine learning in cancer imaging. Archive and imaging resources: In order to train 

and validate, supervised learning approaches need massive amounts of labelled data 103. Artificial 

intelligence (AI) models in cancer imaging might make use of a multitude of data sources. Such as 

biobanks of medical pictures in digital formats; imaging biomarkers being defined as endpoint 

surrogates; or even population studies 111′.By establishing probabilities of development of disease, 

prediction of disease, early disease diagnosis and phenotyping, grading and staging of disease, 

targeting therapies, monitoring treatment efficacy, predicting adverse events, imaging biobanks allow 

in silico evaluation and validation of the new biomarkers. 

One way to collect and share enough high-quality, well selected data is via open access data 

repositories. Cancer image repositories that are open access are few. There is a lack of consensus on 

the topic of data sharing. In addition, there is a lack of uniformity among countries when it comes to 

data privacy, informed consent requirements, and the growing interest in the potential monetary worth 

of patient data, and might block data sharing. Researchers and institutions often restrict or outright 

ban access to key data sets because they see them as intellectual property. Data used to verify 

algorithms authorised for commercial usage is argued for by regulatory authorities (such as the FDA) 

to be kept secret114. 

The Cancer Imaging Archive (TCIA), the biggest open access library of cancer images (Fig. 6), was 

established and is still run by the US National Cancer Institute (115,116).          

One goal of TCIA is to make more high-quality cancer imaging data sets available to the public so 

that researchers may use them. Compliance with the F.A.I.R. (Findable, Accessible, Interoperable, 

and Reproducible) criteria for data release has ensured that the data is available to the public 117,118. 

Data warehouses are being built by other research-funded organisations within the EU and beyond. 

While dataset quantity is important, data variability and quality are equally crucial. The data collected 

should be of high enough quality and collected using consistent parameters. The results of clinical 

trials are more reliable because of the stringent quality controls and consistent methods used to gather 

the data. The primary goal of TCIA is to compile, organise, and disseminate information derived from 
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finished clinical studies. Here, curation means making sure that data formats, metadata, and 

anatomical coverage are all uniform and meet international data standards; it also means making sure 

that any personally identifiable information about patients is anonymized. 

Training ML algorithms on data that accurately depicts population variation, illness presentation, and 

data collecting methods is essential for their clinical use 119,120. The limited quantity and high 

expense of datasets for training and testing that are of high quality are caused by the manual creation 

of labelled data by human professionals. When working on a machine learning project, annotating the 

data and preparing it for future analysis and modelling might be the most time-consuming task. To 

improve efficiency, crowd sourcing is being tested for image annotation, which is often a bottleneck 

for AI and ML. At the patient level, annotations may be supplied at overall survival or disease-free 

survival; at the picture level, they can be provided at benign or malignant; and at the voxel level, they 

can be provided at lesion or non-lesion. When training automated segmentation models, radiologists 

manually define lesions in many image slices 121, but lesion detection algorithms often need 

annotations of a bounding box type, typically enclosing the lesion. 

It will be important to think about ways to handle data heterogeneity when large amounts of imaging 

data from many locations and scanners are merged into archives. Using deep learning techniques to 

learn from such heterogeneous data could be a solution; this might lead to more consistent and 

repeatable results. In order to draw repeatable causality123 conclusions from virtual patient cohorts, 

studies that look back at past events using help resolve issues that are pertinent to healthcare and 

public policy. Using a cross-validation strategy to build and test AI models is acceptable, especially 

when the condition being studied is uncommon and the datasets are limited. 

Concerns about the lack of transparency and explainability around the use of artificial intelligence 

(AI) in cancer imaging have been addressed via the use of open-source software (OSS) strategies and 

collaborative efforts. Open source software (OSS) refers to computer programmes whose source code 

is accessible to the public via a legally binding licence that grants certain rights to anyone who obtain 

such rights, including the ability to modify, enhance, and redistribute the software for free. Depending 

on the preferences of the copyright holder, there are several kinds of open source software licences 

available today [https:// opensource.org/approval]. In America, you may find a wide variety of 

licences, from the more liberal Apache 2.0 licence to the more restrictive General Public Licence 

(GPL). A variety of commercial contracts allow for the transformation of OSS from its non-

commercial form into products that include extra services like training, documentation, warranty, and 

maintenance. 

I open-source software (OSS), (ii) a system of governance, and (iii) a network of collaborators are the 

three interdependent parts of an effective open-source ecosystem. More than fifty machine learning 

(ML) packages are available as open source software (OSS) at this time, and they run on a wide 

variety of systems and languages. The TensorFlow, Keras, PyTorch, and Caffe2 packages are among 

the most widely used ones. The pros and cons of each one rely on the specific requirements of the 

target audience. 

    While the developers and sponsors of these open source software packages often have their own 

use cases and applications in mind when creating and supporting these packages, medical imaging 

https://journal.silkroad-science.com/index.php/ejheaa


European Journal of Learning on History and Social Sciences Volume 1, Issue 3 | 2024 

 https://journal.silkroad-science.com/index.php/ejheaa  - 40 

 

 

research may benefit greatly from using these packages as a starting point. To be more effective in 

medical settings, however, they will require optimisation. Pattern recognition in consumer apps, for 

instance, is often reliant on visual characteristics and picture orientation. Diseases in medical pictures 

are often subtle and show up as small variations in grey value rather than graphical elements; yet, 

medical image patterns are often orientation-independent. These considerations highlight the need to 

re-train and fine-tune algorithms accessible via OSS packages using medical imaging data in order to 

achieve optimal performances. In conclusion, open source software (OSS) offers a realistic way for 

the AI community to engage, build, and test new AI tools while simultaneously addressing some of 

the privacy and transparency issues. 

 

There are substantial perceived benefits of using AI solutions in healthcare124 across the whole 

clinical workflow, which has implications for both regulatory systems and healthcare itself. The 

diagnostic process for patients will be enhanced in radiology as a result, beginning with the 

appropriateness of imaging requests (125) and ending with the follow-up of actionable findings in 

radiological reports (126). Due to the persistence of substantial implementation hurdles, many 

improvements have not yet reached their full potential. 

Software is now subject to stricter regulation as a medical device (SaMD) due to the new EU Medical 

Device Regulations, which went into effect in 2021. The software is certified based on how it is 

utilised and used in the clinical workflow. It is important to note that most AI software in imaging is 

now certified as a decision-support tool and should not be utilised independently for clinical or patient 

care. It is important to think about whether radiologists will utilise the software during primary 

reporting or as a second read after the original main report is provided. Just recently, an ad Throughout 

the healthcare industry, there are a plethora of software products that have received regulatory 

clearance but have yet to be used. Through ongoing training, AI products have the potential to keep 

improving even after their original release. Despite having CE markings or FDA approval, many 

items have entered the market without first undergoing independent testing. To that end, 127 a new 

framework for the FDA to follow is being considered to guarantee the security and efficacy of AI 

solutions. Premarket submissions are now required to adhere to the FDA's specified change control 

strategy. Both the mechanism utilised to perform these controlled changes (the algorithm change 

protocol) and the expected modifications (SaMD pre-speci¬fications) are part of this strategy. 

Manufacturers are expected to commit to transparency and real-world performance monitoring. They 

are also expected to report the FDA on any modifications made as part of the authorised pre-

specifications and the algorithm change process.                                                                                                                            

Initiation of a Data Protection Impact Assessment is often required at the local level after software or 

hardware validation as a certified medical device. This is to ensure data privacy, and in Europe, this 

entails adhering to the General Data Protection Regulations (GDPR). Also, when considering 

potential IT architectures for implementation, it's wise to do a Solution Architecture Review. Since 

the GDPR might be interpreted differently in different countries, local regulations must also be 

followed when it comes to the use and storage of patient data. The need for a logical and consistent 

digital infrastructure and worries about patient privacy have been called "the uncomfortable truth" in 

medical AI 128. 
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The AI company's product design, the healthcare system's diversity and size, and knowledge of data 

transfers between healthcare providers and software processors all play a role in the software 

integration process with existing hospital IT infrastructure. Failure of software integration is a known 

barrier for adoption. In contrast to well-established companies with solid products, hospitals typically 

have longer integration timelines due to the complexity of their radiology informatic systems (such 

as PACS and VNA, which communicate with HIS and RIS) and the wide variety of data inputs (such 

as the non-standardized naming of imaging sequences from different scanners). 

If we want AI workflows to work, we need to make sure that all imaging procedures follow the same 

acquisition protocol, regardless of the scanner or vendor. We also need to make sure that all 

radiological reports follow the same structure and use the same lexicon so that data mining can be 

easier. The American College of Radiology has suggested some structured reporting templates on 

RadReports.org. In the absence of these prerequisites, software integration may have to be planned 

for each modality separately, which might lead to intricate data programme errors may manifest as a 

result of such input data heterogeneity, depending on the level of algorithm maturity.  

It is possible to approach the introduction of a new AI tool into a healthcare system with caution at 

first by coordinating a trial period with the provider. A "try before you buy" strategy would let 

customers evaluate the AI tool's reliability, usefulness, and integration with their workflow before 

making a purchase. Reason being, doctors won't trust the tool until it shows a high \ level of accuracy. 

Integrating a radiologist feedback feature into the PACS interface is one possible option. By utilising 

checkboxes labelled "agree," "AI overestimation," "AI underestimation," or "both over and 

underestimation," the radiologist may assign each AI algorithm a grade based on how well it 

performed. Because of this, it would be possible 

Box 2 | Important factors for the selection of AI into a health system 

Criteria and benchmarks 

CE labelling FDA clearance UKCA marking 

Incentives and motivations 

Targeting a common disease 

Potential for the AI algorithm to be developed into products that generate revenue Attracting better 

or new payors 

Formulation of fair value proposition between stakeholders or partners Latitude to create/share own 

business model 

AI tool Infrastructure fits with existing informatic systems The AI tool can be assimilated into the 

clinical workflow 

people to report what they see as inconsistencies so that they might be investigated further. Also, be 

wary of vendor-developed solutions that force users to use their algorithms regardless of whether or 
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not such methods are suitable for your individual needs. Education on the software tool's use is also 

necessary for the community of professionals that engage with it. While training a small set of AI 

users would be manageable, dealing with a big medical system's prospective users is a significant 

challenge. 

Using approved medical devices to handle patient data in ordinary clinical practice does not need 

further permission. Nevertheless, manufacturers must acquire specific data permission from patients 

in advance if they want to use patient input to enhance their software programme. Since post-hoc 

sharing of such data may be prohibited, procedures should be established to identify patients who 

have granted consent and to withdraw it as needed. 

When all the obstacles to AI deployment are removed, one question may remain unanswered: who 

will pay for the AI? No healthcare systems or private health insurers have covered AI use as of yet, 

even though AI development and testing may be supported via research grants or commercial 

partnerships with firms. Finding dedicated funds to assist the use of AI is difficult in the context of 

falling radiological procedure fees, since AI may be expensive to implement across healthcare 

systems. There is currently no documented proof of AI improving work efficiency, despite the fact 

that AI shows great potential in this area. An opportunity to establish tariff models for the usage of 

AI may arise with the creation of specific patient-centric services that employ AI. An initiative in the 

United Kingdom is testing a bone health service that will pay to screen for those who are likely to 

suffer from osteoporotic spinal fractures. The business case was built around the entire service, not 

just one AI product. The service's goal was to find patients who were at risk of osteoporotic fractures, 

so they could be treated early and maybe reduce healthcare costs in the long run by a smaller number 

of fractures. The integration of AI with value-based healthcare is shown here. 

Accumulating local data to support the implementation of AI is crucial in less cohesive healthcare 

systems that include imaging services as part of their provider network, meaning they deliver 

specialised services. Metrics that demonstrate improvements in reporting accuracy, such as a decrease 

in patient recall rates during mammography, faster reporting times, and increased revenues, are just a 

few examples. It is feasible to evaluate new artificial intelligence solutions in diverse healthcare 

markets and with different combinations of payer models. This might lead to the ultimate widespread 

use of AI software tools in healthcare systems (Box 2).                                                                             

The future of radiology: Radiologists need training in artificial intelligence (AI) concepts and 

algorithm validation so they can assess the usefulness of AI tools before incorporating them into 

clinical practice. 

Some forces are pushing for the hasty incorporation of AI technologies into healthcare workflows. 

One major issue is the scarcity of qualified radiologists, which is affecting many nations' workforces. 

Roughly 10% of radiology positions in the UK go vacant 129. Second, the demand for and effort 

associated with imaging has been steadily rising over the world. There has been an annual increase 

of around 10% in the CT and MRI workload in the UK. Thirdly, there is an incessant push to enhance 

workflow efficiency by decreasing the time it takes to process images without lowering the quality of 

the diagnostics. Last but not least, AI is considered as a tool to assist radiologists with tedious and 

boring repeated duties, such as sequential tumour size measuring or cancer screening. 
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Conclusion 

Radiologists would be able to evaluate the efficacy of AI systems if medical schools and 

radiology programmes included courses on algorithm design, training, testing, and validation; 

fundamental statistics relevant to AI and ML; data requirements and their associated challenges; and 

the language and primary methodology of AI and ML. In order to empower radiologists, it is 

necessary to teach them how to evaluate AI algorithms in a way that is both useful and rigorous in 

their clinical practice. 

     Radiologists, computer scientists, data scientists, trainee radiologists, other doctors, 

radiographers, medical students, and data engineers are all important players in the radiology industry, 

and their education will determine the future of application of AI and ML in the domain. In order to 

meet the unmet requirements in cancer, it is crucial to build AI tools that are both technically 

competent and therapeutically useful. This can only be achieved via a multidisciplinary discussion. 

To facilitate communication and collaboration amongst all parties involved, both locally and globally, 

there need to be an increase in AI-focused gatherings and conferences that draw from a variety of 

disciplines. 

The majority of radiologists are pleased with the fast advancements in artificial intelligence 

(AI), especially machine learning (ML), in the field of cancer imaging, which has many positive 

therapeutic applications. When working on new ML techniques, the availability of imaging data is 

often a limiting factor; 

Having said that, biobanks and open access provide the possibility of creating and use carefully 

selected, real-world image data. databases to circumvent these constraints. Potentially improved 

center-to-center communication and cooperation could result from using open-source tools for 

algorithm development wherever feasible. While these AI software algorithms may improve 

diagnostic performance, it is unclear which ones will last and which ones will be cost-effective in the 

long run. There is a growing consensus on the need for a more robust regulatory framework to 

authorise the use of AI-powered clinical tools. Because of the lack of thorough testing that these 

programmes often get before release, a systematic review is necessary. It is also crucial to provide all 

parties involved, particularly radiologists, with enough knowledge of this emerging field so that they 

can evaluate these technologies critically before incorporating them into their own work. The creation 

of practical clinical tools with the goal of improving patient care and outcomes may be facilitated by 

opening up opportunities for multidisciplinary cooperation.. 

 

References 

[1]. Erickson, B. J., Korfiatis, P., Akkus, Z. & Kline, T. L. Machine learning for medical 

imaging. Radiographics 37, 505–515 (2017). 

[2]. Napel, S. In Radiomics and Radiogenomics: Technical Basis and Clinical Applications (eds 

Napel, S. & Rubin, D. L.) 3–12 (CRC Press, 2019). 

[3]. Trivizakis, E. et al. Artificial intelligence radiogenomics for advancing precision and 

effectiveness in oncologic care (Review). Int. J. Oncol. 57, 43–53 (2020). 

[4]. Lo Gullo, R., Daimiel, I., Morris, E. A. & Pinker, K. Combining molecular and imaging 

https://journal.silkroad-science.com/index.php/ejheaa


European Journal of Learning on History and Social Sciences Volume 1, Issue 3 | 2024 

 https://journal.silkroad-science.com/index.php/ejheaa  - 44 

 

 

metrics in cancer: radiogenomics. Insights Imaging 11, 1 (2020). 

[5]. Rubin, D. L., Ugur Akdogan, M., Altindag, C. & Alkim, E. ePAD: an image annotation 

and analysis platform for quantitative imaging. Tomography 5, 170–183 (2019). 

[6]. Kalpathy-Cramer, J. et al. A comparison of lung nodule segmentation algorithms: methods 

and results from a multi-institutional study. J. Digit. Imaging 29, 476–487 (2016). 

[7]. Echegaray, S., Bakr, S., Rubin, D. L. & Napel, S. Quantitative image feature engine (QIFE): 

an open-source, modular engine for 3D quantitative feature extraction from volumetric 

medical images. J. Digit. Imaging 31, 403–414 (2018). 

[8]. van Griethuysen, J. J. M. et al. Computational radiomics system to decode the radiographic 

phenotype. Cancer Res. 77, e104–e107 (2017). 

[9]. Zhang, L. et al. IBEX: an open infrastructure software platform to facilitate collaborative 

work in radiomics. Med. Phys. 42, 1341–1353 (2015). 

[10]. Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative 

radiomics approach. Nat. Commun. 5, 4006 (2014). 

[11]. Gevaert, O. et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers 

by leveraging public gene expression microarray data–methods and preliminary results. 

Radiology 264, 387–396 (2012). One hundred fourteen of 180 CT image features and the 

PET standardized uptake value were predicted in terms of metagenes with an accuracy of 

65%-86%. 

[12]. Mattonen, S. A. et al. Quantitative imaging feature pipeline: a web-based tool for utilizing, 

sharing, and building image-processing pipelines. J. Med. Imaging 7, 042803 (2020). 

[13]. Di Tommaso, P. et al. The impact of Docker containers on the performance of genomic 

pipelines. PeerJ. 3, e1273 (2015). 

[14]. Dankers, F., Traverso, A., Wee, L. & van Kuijk, S. M. J. In Fundamentals of Clinical Data 

Science (eds Kubben, P.,Dumontier, M. & Dekker, A.) 101–120 (2019). 

[15]. Traverso, A., Dankers, F., Osong, B., Wee, L. & van Kuijk, S. M. J. In Fundamentals of 

Clinical Data Science (eds Kubben, P., Dumontier, M. & Dekker, A.) 121–133 (2019). 

[16]. Parmar, C. et al. Radiomic machine-learning classifiers for prognostic biomarkers of head 

and neck cancer. Front. Oncol. 5, 272 (2015). 

[17]. Ather, S., Kadir, T. & Gleeson, F. Artificial intelligence and radiomics in pulmonary nodule 

management: current status and future applications. Clin. Radiol. 75, 13–19 (2020). 

[18]. Deng, J. D. et al. In IEEE Conference on Computer Vision and Pattern Recognition. 248–

255 (2009). 

[19]. Rieke, N. et al. The future of digital health with federated learning. NPJ Digit. Med. 3, 119 

(2020). 

[20]. Kirienko, M. et al. Distributed learning: a reliable privacy-preserving strategy to change 

multicenter collaborations using AI. Eur. J. Nucl. Med. Mol. Imaging 

https://doi.org/10.1007/s00259-021-05339-7 (2021). 

[21]. Kitamura, F. C. & Marques, O. Trustworthiness of artificial intelligence models in 

radiology and the role of explainability. J. Am. Coll. Radiol. 18, 1160–1162 (2021). 

[22]. Bi, W. L. et al. Artificial intelligence in cancer imaging: clinical challenges and 

applications. CA Cancer J. Clin. 69, 127–157 (2019). 

[23]. Mohamed, A. A. et al. A deep learning method for classifying mammographic breast 

density categories. Med. Phys. 45, 314–321 (2018). 

[24]. Arieno, A., Chan, A. & Destounis, S. V. A review of the role of augmented intelligence in 

breast imaging: from automated breast density assessment to risk stratification. Am. J. 

Roentgenol. 212, 259–270 (2019). 

[25]. Sprague, B. L. et al. Variation in mammographic breast density assessments among 

radiologists in clinical practice: a multicenter observational study. Ann. Intern. Med. 165, 

457–464 (2016). 

[26]. Yala, A., Lehman, C., Schuster, T., Portnoi, T. & Barzilay, R. A deep learning 

https://journal.silkroad-science.com/index.php/ejheaa


European Journal of Learning on History and Social Sciences Volume 1, Issue 3 | 2024 

 https://journal.silkroad-science.com/index.php/ejheaa  - 45 

 

 

mammography-based model for improved breast cancer risk prediction. Radiology 292, 

60–66 (2019). Deep learning models that use full-field mammograms yield substantially 

improved risk discrimination compared with the standard Tyrer-Cuzick (version 8) risk 

prediction model. 

[27]. Dembrower, K. et al. Comparison of a deep learning risk score and standard 

mammographic density score for breast cancer risk prediction. Radiology 294, 265–272 

(2020). 

[28]. Le Boulc’h, M. et al. Comparison of breast density assessment between human eye and 

automated software on digital and synthetic mammography: Impact on breast cancer risk. 

Diagn. Interv. Imaging 101, 811–819 (2020). 

[29]. Liu, B. et al. Evolving the pulmonary nodules diagnosis from classical approaches to deep 

learning-aided decision support: three decades’ development course and future prospect. J. 

Cancer Res. Clin. Oncol. 146, 153–185 (2020). 

[30]. Li, D. et al. The performance of deep learning algorithms on automatic pulmonary nodule 

detection and classification tested on different datasets that are not derived from LIDC-

IDRI: a systematic review. Diagnostics 9, https:// doi.org/10.3390/diagnostics9040207 

(2019). The studies reviewed reached a classification accuracy between 68-99.6% and a 

detection accuracy between 80.6-94%. 

[31]. Schreuder, A., Scholten, E. T., van Ginneken, B. & Jacobs, C. Artificial intelligence for 

detection and characterization of pulmonary nodules in lung cancer CT screening: ready 

for practice. Transl. Lung Cancer Res. 10, 2378–2388 (2021). 

[32]. Raya-Povedano, J. L. et al. AI-based strategies to reduce workload in breast cancer 

screening with mammography and tomosynthesis: a retrospective evaluation. Radiology 

300, 57–65 (2021). 

[33]. Graewingholt, A. & Duffy, S. Retrospective comparison between single reading plus an 

artificial intelligence algorithm and two-view digital tomosynthesis with double reading in 

breast screening. J. Med. Screen https:// doi.org/10.1177/0969141320984198 (2021). 

[34]. Dembrower, K. et al. Effect of artificial intelligence-based triaging of breast cancer 

screening mammograms on cancer detection and radiologist workload: a retrospective 

simulation study. Lancet Digit Health 2, e468–e474 (2020). 

[35]. Tran, W. T. et al. Computational radiology in breast cancer screening and diagnosis using 

artificial intelligence. Can. Assoc. Radiol. J. 72, 98–108 (2021). 

[36]. McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. 

Nature 577, 89–94 (2020). 

[37]. Lennox-Chhugani, N., Chen, Y., Pearson, V., Trzcinski, B. & James, J. Women’s attitudes 

to the use of AI image readers: a case study from a national breast screening programme. 

BMJ Health Care Inform. 28, https://doi.org/10. 1136/bmjhci-2020-100293 (2021). 

[38]. Freeman, K. et al. Use of artificial intelligence for image analysis in breast cancer screening 

programmes: systematic review of test accuracy. BMJ 374, n1872, (2021). 

[39]. Chen, J. H. et al. Opportunistic breast density assessment in women receiving low-dose 

chest computed tomography screening. Acad. Radiol. 23, 1154–1161 (2016). 

[40]. Liu, K. et al. Evaluating a fully automated pulmonary nodule detection approach and its 

impact on radiologist performance. Radiol. Artif. Intell. 1, e180084 (2019). 

[41]. Chakrabarty, S. et al. MRI-based identification and classification of major intracranial 

tumor types by using a 3D convolutional neural network: a retrospective multi-institutional 

analysis. Radiol. Artif. Intell. 3, e200301 (2021). 

[42]. Deepak, S. & Ameer, P. M. Brain tumor classification using deep CNN features via transfer 

learning. Comput. Biol. Med. 111, 103345 (2019). 

[43]. Diaz-Pernas, F. J., Martinez-Zarzuela, M., Anton-Rodriguez, M. & Gonzalez- Ortega, D. 

A Deep learning approach for brain tumor classification and 

 

https://journal.silkroad-science.com/index.php/ejheaa


European Journal of Learning on History and Social Sciences Volume 1, Issue 3 | 2024 

 https://journal.silkroad-science.com/index.php/ejheaa  - 46 

 

 

[44]. segmentation using a multiscale convolutional neural network. Healthcare 9, 

https://doi.org/10.3390/healthcare9020153 (2021). 

[45]. Nazir, M., Shakil, S. & Khurshid, K. Role of deep learning in brain tumor detection and 

classification (2015 to 2020): a review. Comput. Med. Imaging Graph 91, 101940 (2021). 

[46]. Dmitriev, K. et al. Classification of pancreatic cysts in computed tomography images using 

a random forest and convolutional neural network ensemble. Med. Image Comput. Comput. 

Assist. Interv. 10435, 150–158 (2017). 

[47]. Li, H. et al. Differential diagnosis for pancreatic cysts in CT scans using densely-connected 

convolutional networks. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2095–2098 

(2019). 

[48]. Yang, J., Guo, X., Ou, X., Zhang, W. & Ma, X. Discrimination of pancreatic serous 

cystadenomas from mucinous cystadenomas with CT textural features: based on machine 

learning. Front. Oncol. 9, 494 (2019). 

[49]. Du, R. et al. Radiomics model to predict early progression of nonmetastatic nasopharyngeal 

carcinoma after intensity modulation radiation therapy: a multicenter study. Radiol. Artif. 

Intell. 1, e180075 (2019). 

[50]. Khorrami, M. et al. Combination of peri- and intratumoral radiomic features on baseline 

CT scans predicts response to chemotherapy in lung adenocarcinoma. Radiol. Artif. Intell. 

1, e180012 (2019). 

[51]. Bibault, J. E. et al. Deep Learning and Radiomics predict complete response after neo-

adjuvant chemoradiation for locally advanced rectal cancer. Sci. Rep. 8, 12611 (2018). 

[52]. Delli Pizzi, A. et al. MRI-based clinical-radiomics model predicts tumor response before 

treatment in locally advanced rectal cancer. Sci. Rep. 11, 5379 (2021). 

[53]. Shaish, H. et al. Radiomics of MRI for pretreatment prediction of pathologic complete 

response, tumor regression grade, and neoadjuvant rectal score in patients with locally 

advanced rectal cancer undergoing neoadjuvant chemoradiation: an international 

multicenter study. Eur. Radiol. 30, 6263–6273 (2020). 

[54]. Kao, Y. S. & Hsu, Y. A meta-analysis for using radiomics to predict complete pathological 

response in esophageal cancer patients receiving neoadjuvant chemoradiation. In Vivo 35, 

1857–1863 (2021). 

[55]. Jin, X. et al. Prediction of response after chemoradiation for esophageal cancer using a 

combination of dosimetry and CT radiomics. Eur. Radiol. 29, 6080–6088 (2019). 

[56]. DiCenzo, D. et al. Quantitative ultrasound radiomics in predicting response to neoadjuvant 

chemotherapy in patients with locally advanced breast cancer: Results from multi-

institutional study. Cancer Med. 9, 5798–5806 (2020). 

[57]. Bitencourt, A. G. V. et al. MRI-based machine learning radiomics can predict HER2 

expression level and pathologic response after neoadjuvant therapy in HER2 

overexpressing breast cancer. EBioMedicine 61, 103042 (2020). 

[58]. Pons, E., Braun, L. M., Hunink, M. G. & Kors, J. A. Natural language processing in 

radiology: a systematic review. Radiology 279, 329–343 (2016). 

[59]. Oliwa, T. et al. Obtaining knowledge in pathology reports through a natural language 

processing approach with classification, named-entity recognition, and relation-extraction 

heuristics. JCO Clin. Cancer Inform. 3, 1–8 (2019). 

[60]. Steinkamp, J. M., Chambers, C. M., Lalevic, D., Zafar, H. M. & Cook, T. S. Automated 

organ-level classification of free-text pathology reports to support a radiology follow-up 

tracking engine. Radiol. Artif. Intell. 1, e180052 (2019). 

[61]. Holzinger, A., Haibe-Kains, B. & Jurisica, I. Why imaging data alone is not enough: AI-

based integration of imaging, omics, and clinical data. Eur. J. Nucl. Med. Mol. Imaging 46, 

2722–2730 (2019). 

[62]. Saltz, J. et al. Towards generation, management, and exploration of combined radiomics 

and pathomics datasets for cancer research. AMIA Jt. Summits Transl. Sci. Proc. 2017, 85–

https://journal.silkroad-science.com/index.php/ejheaa


European Journal of Learning on History and Social Sciences Volume 1, Issue 3 | 2024 

 https://journal.silkroad-science.com/index.php/ejheaa  - 47 

 

 

94 (2017). 

[63]. Liu, X., Li, K. W., Yang, R. & Geng, L. S. Review of deep learning based automatic 

segmentation for lung cancer radiotherapy. Front. Oncol. 11, 717039 (2021). 

[64]. Kalantar, R. et al. Automatic segmentation of pelvic cancers using deep learning: state-of-

the-art approaches and challenges. Diagnostics 11, https:// 

doi.org/10.3390/diagnostics11111964 (2021). 

[65]. van Kempen, E. J. et al. Performance of machine learning algorithms for glioma 

segmentation of brain MRI: a systematic literature review and meta- analysis. Eur. Radiol. 

31, 9638–9653 (2021). 

[66]. Dinkel, J. et al. Inter-observer reproducibility of semi-automatic tumor diameter 

measurement and volumetric analysis in patients with lung cancer. Lung Cancer 82, 76–82 

(2013). By using computer-assisted size assessment in primary lung tumor, interobserver-

variability can be reduced to about half to one-third compared to standard manual 

measurements. 

[67]. Napel, S., Mu, W., Jardim-Perassi, B. V., Aerts, H. & Gillies, R. J. Quantitative imaging of 

cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer 124, 

4633–4649 (2018). 

[68]. Rundo, L. et al. Tissue-specific and interpretable sub-segmentation of whole tumour burden 

on CT images by unsupervised fuzzy clustering. Comput. Biol. Med. 120, 103751 (2020). 

[69]. Savenije, M. H. F. et al. Clinical implementation of MRI-based organs-at-risk auto-

segmentation with convolutional networks for prostate radiotherapy. Radiat. Oncol. 15, 104 

(2020). 

[70]. Chen, X. et al. A deep learning-based auto-segmentation system for organs-at- risk on 

whole-body computed tomography images for radiation therapy. Radiother. Oncol. 160, 

175–184 (2021). 

[71]. Vrtovec, T., Mocnik, D., Strojan, P., Pernus, F. & Ibragimov, B. Auto- segmentation of 

organs at risk for head and neck radiotherapy planning: from atlas-based to deep learning 

methods. Med. Phys. 47, e929–e950 (2020). 

[72]. Chan, J. W. et al. A convolutional neural network algorithm for automatic segmentation of 

head and neck organs at risk using deep lifelong learning. Med. Phys. 46, 2204–2213 

(2019). 

[73]. Chung, S. Y. et al. Clinical feasibility of deep learning-based auto- segmentation of target 

volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. 

Radiat. Oncol. 16, 44 (2021). 

[74]. Feng, X., Qing, K., Tustison, N. J., Meyer, C. H. & Chen, Q. Deep convolutional neural 

network for segmentation of thoracic organs-at-risk using cropped 3D images. Med. Phys. 

46, 2169–2180 (2019). 

[75]. Zhu, J. et al. Comparison of the automatic segmentation of multiple organs at risk in CT 

images of lung cancer between deep convolutional neural network- based and atlas-based 

techniques. Acta Oncol. 58, 257–264 (2019). 

[76]. Shanbhogue, K. et al. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the 

liver with deep learning-based image reconstruction: qualitative and quantitative 

comparison of image quality with conventional T2-weighted FS sequence. Eur. Radiol. 

https://doi.org/10.1007/s00330-021-08008-3 (2021). Deep learning image reconstruction 

demonstrated superior image quality, improved respiratory motion and other ghosting 

artefacts, and increased lesion conspicuity with comparable liver-to-lesion contrast 

compared to conventional sequence. 

[77]. Chaudhari, A. S. et al. Diagnostic accuracy of quantitative multicontrast 5-minute knee 

MRI using prospective artificial intelligence image quality enhancement. Am. J. 

Roentgenol. 216, 1614–1625 (2021). 

[78]. Monshi, M. M. A., Poon, J. & Chung, V. Deep learning in generating radiology reports: a 

https://journal.silkroad-science.com/index.php/ejheaa


European Journal of Learning on History and Social Sciences Volume 1, Issue 3 | 2024 

 https://journal.silkroad-science.com/index.php/ejheaa  - 48 

 

 

survey. Artif. Intell. Med. 106, 101878 (2020). 

[79]. Nakamura, Y. et al. Automatic detection of actionable radiology reports using bidirectional 

encoder representations from transformers. BMC Med. Inform. Decis. Mak. 21, 262 (2021). 

[80]. Topol, E. J. High-performance medicine: the convergence of human and artificial 

intelligence. Nat. Med. 25, 44–56 (2019). 

[81]. Seyhan, A. A. & Carini, C. Are innovation and new technologies in precision medicine 

paving a new era in patients centric care? J. Transl. Med. 17, 114 (2019). 

[82]. Brady, S. M., Highnam, R., Irving, B. & Schnabel, J. A. Oncological image analysis. Med. 

Image Anal. 33, 7–12 (2016). 

[83]. Jimenez-Sanchez, A. et al. Heterogeneous tumor-immune microenvironments among 

differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938.e920 

(2017). 

[84]. Martin-Gonzalez, P. et al. Integrative radiogenomics for virtual biopsy and treatment 

monitoring in ovarian cancer. Insights Imaging 11, 94 (2020). 

[85]. Bukowski, M. et al. Implementation of eHealth and AI integrated diagnostics with 

multidisciplinary digitized data: are we ready from an international perspective. Eur. 

Radiol. 30, 5510–5524 (2020). 

[86]. Mun, S. K., Wong, K. H., Lo, S. B., Li, Y. & Bayarsaikhan, S. Artificial intelligence for 

the future radiology diagnostic service. Front. Mol. Biosci. 7, 614258 (2020). 

[87]. Allen, B. Jr. et al. A road map for translational research on artificial intelligence in medical 

imaging: from the 2018 National Institutes of Health/ RSNA/ACR/The Academy 

Workshop. J. Am. Coll. Radiol. 16, 1179–1189 (2019). 

[88]. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). 

[89]. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 

42, 60–88 (2017). 

[90]. Rajchl, M. et al. DeepCut: object segmentation from bounding box annotations using 

convolutional neural networks. IEEE Trans. Med. Imaging 36, 674–683 (2017). 

[91]. Chalkidou, A., O’Doherty, M. J. & Marsden, P. K. False discovery rates in PET and CT 

studies with texture features: a systematic review. PLoS ONE 10, e0124165 (2015). 

[92]. Zanfardino, M. et al. Bringing radiomics into a multi-omics framework for a 

comprehensive genotype-phenotype characterization of oncological diseases. J. Transl. 

Med. 17, 337 (2019). 

[93]. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression 

data using empirical Bayes methods. Biostatistics 8, 118–127 (2007). 

[94]. Hernan, M. A. & Robins, J. M. Using big data to emulate a target trial when a randomized 

trial is not available. Am. J. Epidemiol. 183, 758–764 (2016). 

[95]. Schwier, M. et al. Repeatability of multiparametric prostate MRI radiomics features. Sci. 

Rep. 9, 9441 (2019). 

[96]. Orlhac, F., Frouin, F., Nioche, C., Ayache, N. & Buvat, I. Validation of a method to 

compensate multicenter effects affecting CT radiomics. Radiology 291, 53–59 (2019). 

[97]. Berenguer, R. et al. Radiomics of CT features may be nonreproducible and redundant: 

influence of CT acquisition parameters. Radiology 288, 407–415 (2018). Many radiomics 

features were found to be redundant and nonreproducible, indicating the need for careful 

feature selection. 

[98]. Hagiwara, A., Fujita, S., Ohno, Y. & Aoki, S. Variability and standardization of quantitative 

imaging: monoparametric to multiparametric quantification, radiomics, and artificial 

intelligence. Invest. Radiol. 55, 601–616 (2020). 

[99]. Fedorov, A. et al. An annotated test-retest collection of prostate multiparametric MRI. Sci. 

Data 5, 180281 (2018). 

[100]. Kalpathy-Cramer, J. et al. Radiomics of lung nodules: a multi-institutional study of 

robustness and agreement of quantitative imaging features. Tomography 2, 430–437 

https://journal.silkroad-science.com/index.php/ejheaa


European Journal of Learning on History and Social Sciences Volume 1, Issue 3 | 2024 

 https://journal.silkroad-science.com/index.php/ejheaa  - 49 

 

 

(2016). 

[101]. McNitt-Gray, M. et al. Standardization in quantitative imaging: a multicenter comparison 

of radiomic features from different software packages on digital reference objects and 

patient data sets. Tomography 6, 118–128 (2020). 

[102]. Zwanenburg, A. et al. The image biomarker standardization initiative: standardized 

quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–

338 (2020). 

[103]. Shortliffe, E. H. & Sepulveda, M. J. Clinical decision support in the era of artificial 

intelligence. JAMA 320, 2199–2200 (2018). 

[104]. Giger, M. L., Chan, H. P. & Boone, J. Anniversary paper: History and status of CAD and 

quantitative image analysis: the role of Medical Physics and AAPM. Med. Phys. 35, 5799–

5820 (2008). 

[105]. Helvie, M. A. et al. Sensitivity of noncommercial computer-aided detection system for 

mammographic breast cancer detection: pilot clinical trial. Radiology 231, 208–214 (2004). 

[106]. Birdwell, R. L., Ikeda, D. M., O’Shaughnessy, K. F. & Sickles, E. A. Mammographic 

characteristics of 115 missed cancers later detected with screening mammography and the 

potential utility of computer-aided detection. Radiology 219, 192–202 (2001). 

[107]. Kohli, A. & Jha, S. Why CAD failed in mammography. J. Am. Coll. Radiol. 15, 535–537 

(2018). 

[108]. Lehman, C. D. et al. Diagnostic accuracy of digital screening mammography with and 

without computer-aided detection. JAMA Intern. Med. 175, 1828–1837 (2015). 

[109]. Fenton, J. J. et al. Influence of computer-aided detection on performance of screening 

mammography. N. Engl. J. Med. 356, 1399–1409 (2007). 

[110]. Rodriguez-Ruiz, A. et al. Detection of breast cancer with mammography: effect of an 

artificial intelligence support system. Radiology 290, 305–314 (2019). 

[111]. Jaremko, J. L. et al. Canadian association of radiologists white paper on ethical and legal 

issues related to artificial intelligence in radiology. Can. Assoc. Radiol. J. 70, 107–118 

(2019). 

[112]. Radiology, E. S. o. ESR position paper on imaging biobanks. Insights Imaging 

[113]. 6, 403–410 (2015). 

[114]. Guinney, J. & Saez-Rodriguez, J. Alternative models for sharing confidential biomedical 

data. Nat. Biotechnol. 36, 391–392 (2018). 

[115]. Negrouk, A. & Lacombe, D. Does GDPR harm or benefit research participants? An EORTC 

point of view. Lancet Oncol. 19, 1278–1280 (2018). 

[116]. Gallas, B. D. et al. Evaluating imaging and computer-aided detection and diagnosis devices 

at the FDA. Acad. Radiol. 19, 463–477 (2012). 

[117]. Prior, F. et al. The public cancer radiology imaging collections of The Cancer Imaging 

Archive. Sci. Data 4, 170124 (2017). 

[118]. Clark, K. et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public 

information repository. J. Digit. Imaging 26, 1045–1057 (2013). TCIA contains 30.9 

million radiology images representing data collected from approximately 37,568 subjects; 

it outlines the curation and publication methods employed by TCIA and makes available 

15 collections of cancer imaging data. 

[119]. Wilkinson, M. D. et al. A design framework and exemplar metrics for FAIRness. Sci. Data 

5, 180118 (2018). 

[120]. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and 

stewardship. Sci Data 3, 160018 (2016). 

[121]. Prior, F. et al. Open access image repositories: high-quality data to enable machine learning 

research. Clin. Radiol. 75, 7–12 (2020). 

[122]. Vayena, E., Blasimme, A. & Cohen, I. G. Machine learning in medicine: addressing ethical 

challenges. PLoS Med. 15, e1002689 (2018). 

https://journal.silkroad-science.com/index.php/ejheaa


European Journal of Learning on History and Social Sciences Volume 1, Issue 3 | 2024 

 https://journal.silkroad-science.com/index.php/ejheaa  - 50 

 

 

[123]. Müller, H., Kalpathy-Cramer, J. & Seco de Herrera, A. G. Information retrieval evaluation 

in a changing wolrd. 41 (2019). 

[124]. von Elm, E. et al. The strengthening the reporting of observational studies in epidemiology 

(STROBE) statement: guidelines for reporting observational studies. Lancet 370, 1453–

1457 (2007). 

[125]. Castro, D. C., Walker, I. & Glocker, B. Causality matters in medical imaging. 

[126]. Nat Commun 11, 3673 (2020). 

[127]. Langlotz, C. P. Will artificial intelligence replace radiologists? Radiol. Artif. Intell. 1, 

e190058 (2019). 

[128]. Bizzo, B. C., Almeida, R. R., Michalski, M. H. & Alkasab, T. K. Artificial intelligence and 

clinical decision support for radiologists and referring providers. J. Am. Coll. Radiol. 16, 

1351–1356 (2019). 

[129]. Lou, R., Lalevic, D., Chambers, C., Zafar, H. M. & Cook, T. S. Automated detection of 

radiology reports that require follow-up imaging using natural language processing feature 

engineering and machine learning classification. J. Digit. Imaging 33, 131–136 (2020). 

[130]. US Food and Drugs Adminstration. Machine Learning (AI/ML)-based Software as a 

Medical Device (SaMD). (2019). 

[131]. Panch, T., Mattie, H. & Celi, L. A. The “inconvenient truth” about AI in healthcare. NPJ 

Digit. Med. 2, 77 (2019). 

[132]. Clinical Radiology. UK workforce census 2020 report. (Royal College of Radiologists, 

2020). 
 

https://journal.silkroad-science.com/index.php/ejheaa

