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Introduction 

In industry and technology, especially in connection with the creation of new modern 

structures, structures whose constituent or main load-bearing elements are cylindrical shells of 

large diameters are widely used. In many cases, the operating conditions of such structures pose 

challenges for designers related to calculations of the strength and stability of shells during their 

interaction with both the elastic filler and the surrounding elastic material. For example, with an 

increase in the height of berthing or fencing structures, the versatility of the shells is confirmed 

by the possibility of their successful use in construction “in the water” and “dry” on almost any 

soil foundation. This, along with calculations related to determining the settlement of the 

foundation soil, also requires the development of methods for determining the stress-strain state 

(SSS) and the stability of shells interacting with the environment (internal and external backfill). 

In the technical literature there are methods for calculating pipelines that take into account the 

unevenness of soil pressure based on the representation of the soil thickness in the form of an 

elastic medium, but to date there are no recommendations that would allow obtaining a sufficiently 

reliable picture of the distribution of soil pressure along the perimeter of pipelines - cylindrical 

shells of large diameters. 

 Works devoted to the analysis of stress-strain state of underground pipelines belong to 

Galerkin B.G., Borodavkin P.P., Vinogradov S.V., Kleina G.K., which sets out the principle of 
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consistent complication of pipeline models, describes models of pipelines and soil masses. The 

works of Ainbinder A.B., Kamershtein A.G. [], Akselrad E.A., Ilyin V.P., Aleshin V.V., 

Vislobitsky P.A., Gaiduk V.F., are devoted to calculations of the strength of underground 

pipelines. Zaripova R.M., Ilyina V.P., Naumova G.A., Selezneva V.E., Shammazova A.M. and 

other researchers. And also, a broad review of the literature devoted to the development of 

methods for calculating underground pipelines presented in the works of V.A. Chechelov, A.V. 

Yavarova, G.S. Kolosova, V.V. Kuroedov [1-11, 18,19]. 

 Essentially, when calculating SSS and stability of pipelines, the influence of soil is taken 

into account indirectly. In this regard, this work implements an algorithm for calculating the stress-

strain state of a soil environment within the diameter of a large cross-section pipe. It is assumed 

that the pipe is laid in a trench. Soil is considered as an elastic medium that obeys Hooke's linear 

law in the case of a flat deformable state. The solution is based on the variation-difference method 

(VDM) [12-17, 20]. 

 

Methods 

We consider an orthotropic elastic medium that satisfies Hooke’s linear law, which in the 

case of a plane deformed state is taken in the form: 
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Where are , ,r z −  the axes of the cylindrical coordinate system. 

The solution is based on the principle of minimum functional of total potential energy in 

Lagrange form: 
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The coefficients are 66( , 1,2),ija i j a= −
appropriately expressed through independent 

elastic physical and mechanical characteristics: 
, ,r zE E E −

Young's modulus, rC  − shear 

modulus, 
, ,r z zrv v v  −

Poisson's ratios 
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In the particular case of an isotropic medium, it is enough to equate the 66( , 1,2),ija i j a= −

Young’s modulus and Poisson’s ratios in the expressions for and appropriately calculate the shear 

modulus rC  , through which the coefficient is 66.a
determined. The external load (weight of the 

medium, pressure along the surface) naturally enters into the expression of the functional (2). 

 Numerical solution method. Expression (2) regarding continuous displacement values is 

replaced by a finite-difference analogue. To do this, a finite-difference (f.d.) mesh is introduced 

(Fig. 1), and approximating f.r.s are introduced for displacements and their derivatives along 

coordinate directions. Ratios averaged over cells of the k.-r. mesh 
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K.-r. an analogue of the Lagrange functional can be represented in the form 

( , ) ( )b

kl kl i i i

i

Э u v WS Э= −
                                               (4) 

Where are 
,kl klu v −

 the values of displacements in the nodes of the k.-r. grids in ,r   

directions accordingly. iW −
elastic potential of the cell, i −work of external 

b

iЭ − forces applied 

to the cell, iS −
area of the cell. The summation in (4) is carried out over all cells of the c.r. a grid 

(k-numbers of radii in the direction ,l ) of nodes at k radii in the opposite direction r . 

Minimum (4) is determined based on the Euler-Ostrogradsky relations. 
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Where are 
,kl klu v −

 the unknown displacement values? 

 

Fig.1. Spatial finite difference grid 
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Solution algorithm. Based on (2), assuming that the displacements and their derivatives are 

determined by (3), expressions for  

,i i

kl kl

W W
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 

 
can be represented as: 
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Here 
( ) ( ) ( ), , ,...ri i i
u r u −

the averaged values of the functions and derivatives of the cells 

of the k.-r. grids The index is i  omitted throughout for brevity, and the double index is kl  replaced 

by the index .i  

The coefficients in (6), with averaged displacements and their derivatives within i − each 

cell, are determined by the physical and mechanical characteristics of the cell material and its 

geometry. To calculate these coefficients, 
( , , )Я N M ij

 , where is ,N M − the number of the 

node located in relation to the cell as shown in Fig. 1. The same figure defines the numbering of 

nodes inside the cell. Depending on which number inside the cell corresponds to the node in which 

the movements vary, the type of cell is 
,kl klu v

determined. Suppose the displacements 

corresponding to the first node inside the cell vary, then values are , ,N u M  assigned accordingly 

, 1k l − . (see Fig. 2). 

 In general, a node kl  can surround up to four cells. (Fig. 3). Depending on the cell type, a 

value is assigned to the parameter 
j

 in 
( , , )Я N M ij

. 

 In the case when the node belongs to a triangular cell (boundary cells in Fig. 1). For the 

purpose of a unified record of operators, an additional node was introduced, marked. 
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 This made it possible to solve the problem by using an algorithm implemented earlier in 

works in which the obtained mesh q.r. the equations were solved using the algorithm [7]. As in 

[7], the solution to the problem of determining the displacements of an elastic medium is carried 

out using the direct Gaussian elimination method when solving the system of corresponding linear 

equations (5). The stresses were calculated using formulas (1), in which the plane strain 

components are: 
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In this case, the displacements and their derivatives and the corresponding functions were 

replaced by approximating relations [13]. 

 

Results and Discussion 

The results obtained are presented in comparison with experimental data regarding the 

distribution of soil pressure along the perimeter of the pipe presented in [13, 16, 20]. The 

qualitative picture of the obtained stress-strain state distribution of an elastic medium is consistent 

with that presented in [7]. In the case of a flexible pipe, the pressure along the perimeter of the 

flexible pipe is equalized [7, 9, 10], which was also confirmed by experiments. The presented 

results relate to the calculation of pipelines and relate mainly to checking the reliability of the 

results obtained based on the implemented algorithm in comparison with the available 

experimental data on the distribution of soil pressure along the perimeter of the pipe [7]. 
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Fig.2. a) k.-r. mesh of flat section of soil and circular shell; b) distribution of maximum 

radial and circumferential soil stresses along the perimeter of the cylindrical shell 

 

Fig.3. a) relative deflection of the shell interacting with the external elastic layer depending 

on the rigidity and thickness of the soil; b) relative hoop stress in the shell depending on the 

thickness of the soil. 
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