
European Journal of Medical Genetics and Clinical Biology Volume 1, Issue 1 | 2024

https://journal.silkroad-science.com/index.php/JMGCB 85

Analysis Database Systems and Solve Medical

Problems

Rakhimov Bakhtiyar Saidovich
Head of the Department of Biophysics and information technologies of
Urgench branch of Tashkent Medical Academy, Uzbekistan

Rakhimova Feroza Bakhtiyarovna
Senior teachers of the Department of Biophysics and information
technologies of Urgench branch of Tashkent Medical Academy,
Uzbekistan

Saidova Zarina Bakhtiyar Qizi
Student 1 – course Urgench branch of Tashkent University of Information
Technologies named after Muhammad al Khwarizmi, Uzbekistan

Received: Nov 20, 2023; Accepted: Des 21, 2023; Published: Jan 22, 2024;

Abstract: Due to this mechanism, threshold synchronization is achieved with a minimum amount of

time. It is usually designed for communication between scalar processors via shared memory. The

main function of graphics processors since their inception has been graphics processing. Subsequently,

after it became possible to program the processing of model vertices and pixels of rendered three-

dimensional scenes using special programs (shaders), the architecture of graphic processors changed

significantly. After the advent of the first general-purpose programmable graphics it became

possible to process commands not only for graphic data in vector form, but also to perform ordinary

calculations for arbitrary data on a variety of special cores, while implementing data parallelism.

Keywords: Grafic processors, algorithm, memory, hardware, software.

 This is an open-acces article under the CC-BY 4.0 license

Introduction.

The multilevel memory hierarchy allows access to global data through the first and second level caches.

The second level of the cache is shared between data and texture units, while the first level is shared

between the two multiprocessors and is intended for data only. When calculating on a multiprocessor,

in addition to data from global memory, two additional types of memory are used: constant memory

and shared memory. The constant memory is read-only. It is stored in video memory and cached

on the 8 KB multiprocessor (the total size for all multiprocessors is limited to 64
KB; the constant memory is the same for all multiprocessors). The latency when accessing it can be the
same time as for accessing global memory in case of a cache miss, but if there is a cache hit, then the
access will be performed in 2 multiprocessor clock cycles [5]. Shared memory is intended for reading
/ writing and is organized in the form of memory banks (16 or 32), each of which can be accessed in
2 clock cycles. The entire bundle gets the request to access the shared memory[11]. In this case,
requests may arise immediately to one bank of shared memory, which will entail a conflict and ordering
of requests into the queue with an increase in the access time to bank data for the entire bundle.
Therefore, it is important to take into account the coherence of requests when creating algorithms [1].
The amount of shared memory is also limited (16 KB), but in later versions of GPUs
(Compute Compatibility 2.x) it can be configured depending on the task. In the process of studying
various types of access to memory caches, it was revealed that the required number of cycles can vary
significantly [10].

The device that is the main one in the computing system (CPU) is called the Host. It runs the main
sequential program, which transfers control to the parallel computing device Device (GPU) to

jmgcb
ISSN: 3033-1085

https://doi.org/10.61796/jmgcb.v1i1.143

European Journal of Medical Genetics and Clinical Biology Volume 1, Issue 1 | 2024

https://journal.silkroad-science.com/index.php/JMGCB 86

implement parallel computations. The program that Device runs is called the Kernel. The kernel is

developed in the same language in which the sequential program (C / C ++) is implemented using special

language additions. Parallel execution on a Device is implemented due to threads combined into blocks.

The blocks, in turn, are combined into a (Grid) section, which must completely cover the data processed

by the kernel. In order for the Device to process any data, it is necessary to transfer it to the Device

memory, then get the result by copying the data in the opposite direction.

CUDA allocates five types of memory. These are registers, local, global, shared, constant and texture

memory. Whenever possible, the compiler tries to place all local function variables in registers. These

variables are accessed as quickly as possible. In the current architecture, 8192 32-bit registers are

available per multiprocessor. In order to determine how many registers are available to one thread, it

is necessary to divide this number (8192) by the block size. With the usual division into 64 threads

per block, only 128 registers are obtained. Local memory, when the local data of procedures is too

large, or the compiler cannot calculate some constant step for them when accessing, it can place them

in local memory. This can be facilitated, for example, by casting pointers for types of different sizes.

The CUDA documentation lists the ability to arbitrarily address global memory as one of the main

technology advances. That is, you can read from any memory cell, and you can also write to an arbitrary

cell (this is usually not the case on a GPU). Global memory is not cached. It works very slowly, the

number of calls to the global memory should be minimized in any case. Global memory is mainly

needed to store the results of the program before sending them to the host (in conventional DRAM).

The reason for this is that global memory is the only kind of memory that can be written to. Shared

memory is non-cacheable but fast memory. It is recommended to use it as a managed cache. Only

16KB of shared memory is available per multiprocessor. Dividing this number by the number of tasks

in the block, we get the maximum amount of shared memory available per thread. Constant memory is

cached, the cache exists in a single copy for one multiprocessor, which means that it is common for all

tasks within the block. Constant memory is very easy to use. You can place any type of data in it and

read it using a simple assignment. Texture memory is cached. There is only one cache for each

multiprocessor, which means that this cache is common for all tasks within the block. Texture memory

is not physically separated from global memory.

In PRAM, all control is performed using a single clock counter, and it is considered that all

processors execute instructions synchronously with this counter. In one cycle, three actions are

performed at once: reading data from the shared memory, performing an operation on the read data, and

writing the results to the shared memory. This condition is met even if all processors perform different

operations or a different number of memory accesses. That is why this model is idealized, because in

real computers, these actions vary in time. Nevertheless, this model is suitable for creating, analyzing

and comparing algorithms, taking into account the following assumptions [6]:

1) the number of processors in the machine is not limited;

2) each processor has equal access to any cell of the shared memory;

3) the size of the shared memory is not limited;

4) there is no competition for resources;

5) processors operate in MIMD mode.

Objective Statement

Obviously, not all computer vision algorithms can be parallelized on GPUs. Any artificial computer

vision system, regardless of its area of application, should include the following typical stages of

work:

1) image acquisition (photo or video filming);

2) preliminary processing;

3) highlighting characteristic features;

European Journal of Medical Genetics and Clinical Biology Volume 1, Issue 1 | 2024

https://journal.silkroad-science.com/index.php/JMGCB 87

4) detection or segmentation;

5) high-level processing.

One of the basic features of orthogonal bases is presence of fast algorithms for definition of spectral

factors. Fast algorithms allow to reduce quantity of arithmetic operations and volume of necessary

memory. The increase in speed is as a result reached at use of orthogonal bases for digital processing

signals [1, 2, 3, 4].

Materials nad Methods Bulk Synchronous Parallel (BSP, Valiant, 1990) is an extension of the PRAM

model [8]. Later it was transformed into a parallel computing standard [6]. In this model, the main

attention is paid to communication and synchronization of processors. Therefore, the model consists of

the following components [7]:

1) Processors, each of which has fast local memory and can execute multiple virtual threads;

2) A communication network that allows sending and receiving communication messages from

processors;

3) A mechanism for synchronizing all processors at certain points in time.

The algorithm in BSP has a vertical and horizontal structure [10]. The vertical structure is a sequence

of supersteps, each of which consists of three main steps:

1) Local calculations on each processor using only the data that was stored in the processor's local

memory. Calculations are performed asynchronously;

2) Communication between processes using a communication network (messaging);

3) Barrier synchronization of processes. Once a process reaches a synchronization point (a barrier),

it suspends computation and waits for other processes to reach that synchronization point. the results

of the program before sending them to the host (in conventional DRAM).

Unlike the G80, the multiprocessor in the R600 does not have a local shared memory, but consists of

a certain number of vector processors. It is the number of vector processors that determines the size of

a bunch of processes (wavefront - in ATI's terminology). In the best configuration, one

multiprocessor included 16 vector ones. Each vector processor consists of four scalar processors, one

transcendental function processor, a branch block and general purpose registers. Thus, at one time,

due to the use of VLIW, five operations on 32-bit numbers can be simultaneously performed on one

vector processor. But most general-purpose parallel computing emphasizes scalar computing, so this

parallelization feature is rarely used. Different VLIW commands can be executed on all multiprocessors,

but on one multiprocessor for all vector processors, the instruction must be the same, but with different

address registers. Access to video memory is performed for all threads simultaneously within 300 to

600 multiprocessor cycles [6], but due to the use of VLIW and scheduling of thread bundles, the

delay in accessing the global memory of the video adapter is effectively hidden.

The memory controller reports to the task manager. Processed data and constant memory are stored in

video memory and, if necessary, cached in caches of the second and first levels, while they are common

to all multiprocessors.

Results and Discussion

The models of parallel programming discussed above are intended primarily for the programmer to

have an idea about the main structural elements of graphic processors, which include memory and

computing elements, and the relationships between them. In addition, both CUDA and OpenCL have

some algorithm abstraction that assumes that input and output data are represented as an array of

elements, each of which is processed independently of each other, due to which data parallelism is

achieved. We highlight the main disadvantages of these models:

European Journal of Medical Genetics and Clinical Biology Volume 1, Issue 1 | 2024

https://journal.silkroad-science.com/index.php/JMGCB 88

1) there is no mathematical description of the abstract model of the GPU, so it is impossible to estimate
the running time of a particular algorithm on different GPUs;

2) significant parameters of parallel algorithms have not been identified, thanks to which it is

possible to analyze and compare these algorithms in terms of execution time on a GPU with a certain

configuration;

3) despite the fact that the models are heterogeneous (i.e. they take into account not only graphics

processors, but also central ones), they do not have methods for making a decision about the

target computing system;

4) for these models, general principles for optimizing parallel computing have not been developed

(in [2, 6], optimization methods are given for a specific platform, but not for a model);

5) there is no general methodology for the development of parallel algorithms.

These shortcomings are associated with a number of factors that one has to face when developing a

parallel computing model [9], the main of which is the lack of a formal parallel computing model using

a central and graphic processor. A formal model is provided by all abstract models of parallel computing

with their abstract machines, but it is quite difficult to find a formal model suitable for analyzing parallel

computing on GPUs due to the diversity of their architectures. Nevertheless, there are attempts to

formalize some aspects of parallel computing on GPUs.

Conclusions

Computer vision as a scientific discipline refers to theories and technologies for creating artificial

systems that receive information from an image. Despite the fact that this discipline is quite young, its

results have penetrated almost all spheres of life. Computer vision is closely related to other practical

areas [3,14]: 1) image processing, the input data of which are two-dimensional images obtained from

a camera or artificially created. This form of image transformation is aimed at noise suppression,

filtering, color correction, etc.; 2) image analysis, which allows obtaining certain information directly

from the processed image. Such information may include the search for objects, characteristic points,

segments, etc.; 3) vision of the robot, designed to orient the robot in space by modeling the environment

from images received from video cameras; 4) machine vision, which is used in production and industry

for automatic product quality control, product defect detection, measurement control, etc. Typical

applied problems of computer vision are [3,4]: 1) Detection of objects in the image. Despite the fact

that a person can easily select specific objects from an image, this problem has not yet been

completely solved for artificial systems. Most of the solutions are of a particular nature, based on the

specific properties of the object being searched for, and, accordingly, are not suitable for searching for

objects that do not have them. There are several universal algorithms for object detection (neural

networks, Viola-Jones, etc. [8]), which are slow and have a serious detection error with slight deviations

of objects from the desired ones specified during training, but, nevertheless, their simplified versions

widely used for small images. Therefore, an important task while maintaining the accuracy of detection

is to speed up calculations [5]; 2) Recognition of objects in the image [1]. This task is a continuation

of the previous one, the result of which is an array of areas where objects can be found. The purpose

of this task is to determine the presence in these areas of a specific class of objects that already has

more specific features and, accordingly, can be better classified; 3) Identification of objects, the result

of which can be a conclusion about the correspondence of the recognized object to a specific (unique)

instance (for example, a fingerprint, the face of a specific person, a car number, etc.). Separately, it is

worth highlighting from this group character recognition systems, the accuracy of identification of

which affects the quality of the recognized material; 4) Search for images in the database by content,

based on the recognition of a particular class of objects. In this case, the performance of the artificial

system plays a significant role in speeding up the search for images; therefore, the possibility of

parallelizing the algorithms of this group of tasks is considered very important; 5) Reconstruction of a

three-dimensional scene from a certain set of input images (video stream) allows you to determine

the positions of objects and a

European Journal of Medical Genetics and Clinical Biology Volume 1, Issue 1 | 2024

https://journal.silkroad-science.com/index.php/JMGCB 89

source in three-dimensional space, used to move robots, create panoramic images, etc.; 6) Tracking of

moving objects in a video stream provides for direct determination of the position of an object in

space by changing its position on two-dimensional images while maintaining the characteristic features

of the object. This task is very resource-intensive and must be performed in real time, so the main

emphasis when creating algorithms for this area is on their performance; 7) Image processing. This task

area is designed to transform the pixels of two-dimensional images and is a priority for other

computer vision tasks. Almost all transformations are filtering transformations, i.e. a set of operations

is performed on each pixel of the image, depending on other pixels that are in close proximity to the

desired one using special matrices.

References

1. P. P. Kudryashov Algorithms for detecting a human face for solving applied problems of image

analysis and processing: author. dis. Cand. tech. Sciences: 05.13.01. - M, 2007.

2. Tanenbaum E. Modern operating systems. 2nd ed. - SPb .: Peter, 2002 .-- 1040 p .: ill.

3. Forsyth DA, Pons, J. Computer vision. Modern approach / D.A. Forsyth, J. Pons: Trans. from

English - M .: Publishing house "Williams", 2004. - 928 p .: ill. - Parallel. tit. English

4. Frolov V. Solution of systems of linear algebraic equations by the preconditioning method on

graphic processor devices

5. Brodtkorb A.R., Dyken C., Hagen T.R., Hjelmervik J.M., Storaasli O.O. State-of-the-art in

heterogeneous computing / A.R. Brodtkorb, C. Dyken, T.R. Hagen, J.M. Hjelmervik, O.O. Storaasli

// Scientific Programming, T. 18, 2010. - S. 1-33.

6. Rakhimov, BS; ,Russian “Information technologies in medical education”,METHODS OF SCIENCE

Scientific and practical journal,12,25-7,2017,

7. Rakhimov, BS; Ismoilov, OI; Ozodov, RO; ,Russian “Software and automation of forensic

examination”,METHODS OF SCIENCE Scientific and practical journal,11,28-30,2017,

8. Rakhimov, Bakhtiyar S; Khalikova, Gulnora T; Allaberganov, Odilbek R; Saidov, Atabek B;

,Overview of graphic processor architectures in data base problems,AIP Conference

Proceedings,2467,1,020041,2022,AIP Publishing LLC

9. Saidovich, Rakhimov Bakhtiyar; Kabulovna, Sobirova Sabokhat; Bakhtiyarovna, Rakhimova

Feroza; Akbarovna, Allayarova Asal; Bakhtiyarovich, Saidov Atabek; ,ANALYSIS OF THE

GRAPHICS PROCESSORS FOR MEDICAL PROBLEMS,PEDAGOGS jurnali,11,4,167-

177,2022,

10. Allaberganov, Odilbek R; Rakhimov, Bakhtiyar S; Sobirova, Sabokhat K; Rakhimova, Feroza B;

Saidov, Atabek B; ,Problem for medical system with infinite zone potential in the half line,AIP

Conference Proceedings,2647,1,050025,2022,AIP Publishing LLC

11. Rakhimov, Bakhtiyar Saidovich; Saidov, Atabek Bakhtiyarovich; Shamuratova, Inabat

Ismailovna; Ibodullaeva, Zarnigor Ollayor Qizi; ,Architecture Processors in Data Base Medical

Problems,International Journal on Orange Technologies,4,10,87-90,2022,Research Parks Publishing

12. Rakhimov, Bakhtiyar Saidovich; Saidov, Atabek Bakhtiyarovich; Allayarova, Asal Akbarovna;

,Using the Model in Cuda and Opencl for Medical Signals,International Journal on Orange

Technologies,4,10,84-86,2022,Research Parks Publishing

13. Saidovich, Rakhimov Bakhtiyar; Musaevich, Yakubov Durumboy; Bakhtiyarovich, Saidov

Atabek; Qizi, Saidova Zarina Bakhtiyar; ,ANALYSIS OF THE DEVICE FEATURES OF

GENERAL-PURPOSE PROGRAMMABLE GRAPHICS PROCESSORS,CENTRAL ASIAN

JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES,4,1,100-
103,2023,

14. Рахимов, Бахтияр Саидович; Жуманиёзов, Сардор Пирназарович; ,Аппаратно-

ориентированный алгоритм вычисления коэффициентов в базисах J-функций,Актуальные

вопросы технических наук,59-62,2015,

