

PREVALENCE OF TOXOPLASMA GONDII IN DIFFERENT MAMMALIAN HOSTS RUSUL JASIM JAMEEL

Rusul Jasim Jameel

University of wasit, College of Science, biology of science

Thakaa hassan sadiq alrubaie

University of karbala, College of Science, biology of science

Sawsan Awad Fraj Altoby

University of Karbala Science department / Biology

Teba majid bashar

University of wasit College of science/ Biology

Hawra'a Eyad fadhel

University of wasit College of science / biology of science

Received: May 22, 2024; Accepted: Jun 10, 2024; Published: Jul 01, 2024;

Abstract: Toxoplasma gondii is an obligate intracellular protozoan parasite with a global distribution across diverse mammals affecting human and animal health. This review compiles the current information on the incidences of T. gondii in various mammals; companion animals like cats and dogs, farm animals like cattle and sheep, and wild animals like deer and rodents. Research shows that it is more common in cats, the definite host in which the parasite attains sexual maturity (Dubey, 2010). It has been reported that the prevalence in livestock depends on geographical location, farming practice and environmental factors and relatively high in sheep and pigs because of their grazing and feeding behavior and direct contact with oocyst containing environment (Tenter et al., 2000). Wildlife species remain hosts and keep the life cycle of the parasite in natural systems (Robert-Gangneux & Dardé, 2012). This compilation therefore highlights the need for constant monitoring and provision of control measures for the prevention of zoonotic transmission of T. gondii while reflecting on the various factors in host biology, the environment and human activities.

Keywords: Toxoplasma gondii

This is an open-acces article under the CC-BY 4.0 license

Introduction

Toxoplasma gondii is an obligate intracellular protozoan parasite that can infects almost all warm-blooded animals including man. The life cycle of the parasite is characterized by both sexual and asexual reproduction, the definitive hosts are felids where sexual reproduction takes place (Dubey, 2010). T. gondii is widespread and has vast public health and economical implications because it affects both people and animals.

The prevalence of T. gondii varies widely among different mammalian hosts, influenced by factors such as geographical location, environmental conditions, and the specific biology and behavior of the host species (Tenter, Heckeroth, & Weiss, 2000). Domestic animals, particularly cats and dogs, play

a crucial role in the transmission dynamics of T. gondii. Cats, as definitive hosts, shed oocysts in their feces, contaminating the environment and subsequently infecting intermediate hosts, including other mammals and humans (Dubey, Lindsay, & Speer, 1998).

Livestock, including sheep, pigs, and cattle, are significant intermediate hosts for T. gondii. The seroprevalence in these animals is influenced by farming practices, such as housing and feeding methods, which affect their exposure to oocysts (Robert-Gangneux & Dardé, 2012). For instance, studies have shown higher infection rates in sheep and pigs due to their grazing and rooting behaviors, which increase their contact with contaminated soil and water (Pappas, Roussos, & Falagas, 2009).

Wildlife species also play an essential role in the epidemiology of T. gondii. Many wild mammals, including deer, rodents, and various carnivores, act as reservoirs, maintaining the parasite's lifecycle in natural ecosystems (Tenter et al., 2000). These animals contribute to the transmission cycle by becoming infected through environmental exposure or predation, thus perpetuating the parasite's presence in the environment.

Understanding the prevalence and transmission dynamics of T. gondii in different mammalian hosts is crucial for developing effective control strategies. This review aims to provide a comprehensive overview of the prevalence of T. gondii in various mammalian species, highlighting the factors influencing infection rates and the implications for public and animal health. Importance and Significance of the Study

There are several reasons why it is important to know the frequency of T. gondii in various mammalian species. T. gondii is an example of a zoonotic parasite and can be passed from animals to humans making it a real public health concern. Transmission to humans can also occur and result in toxoplasmosis which despite being usually self-resolving can cause serious complications in immunocompromised persons, and congenital infection in pregnant women which may lead to miscarriage or birth defects (Dubey, 2010).

Thus, the findings of this study help to better understand the rates of T. gondii infection and its modes of dissemination among different mammal hosts. Such knowledge is crucial in designing specific measures of prevention and eradicating the circulation of T. gondii to decrease the frequency of toxoplasmosis in people and animals (Robert-Gangneux & Dardé, 2012).

T. gondii infection in livestock is financially disastrous from an economic point of view. Several consequences include; low productivity due to sickness, high costs of veterinary services, and in some occasions, mortality. For instance, toxoplasmosis in sheep can lead to abortion and stillbirths which causes a direct effect to farming (Pappas, Roussos, & Falagas, 2009). Hence, it is important to determine the rate of infection of T. gondii in livestock to outline appropriate measures in animal health management and security.

In this regard, wild animals are essential in the life cycle of T. gondii because they harbor the parasite and contribute to the latter's stability in the environment. Understanding its prevalence in wildlife is important in understanding the ecological aspects of T. gondii transmission which is important in the development of comprehensive control measures that consider both domestic and wild animals (Tenter, Heckeroth, & Weiss, 2000).

Furthermore, this study also shows how the presence of environmental and human related factors plays a role in the dissemination of T. gondii. For example, alterations in land utilization, population density and climate influence the presence of the parasite. Knowledge of these factors is crucial for the forecast of the future dynamics of the prevalence of T. gondii infection and for the search for new ways to minimize its effects.

In summary, this study is significant because it provides a holistic understanding of T. gondii prevalence across different mammalian hosts, emphasizing the interconnectedness of human, animal, and environmental health. The findings will inform public health policies, veterinary practices, and conservation efforts, ultimately contributing to better health outcomes for humans and animals alike.

Methods

This study investigates the prevalence of Toxoplasma gondii in different mammalian hosts, including domestic animals, livestock, and wildlife. The methodology encompasses sample collection, serological testing, and statistical analysis to determine prevalence rates and factors influencing infection.

Sample Collection

- 1. Study Area and Population: The study was conducted in various geographical regions, including urban, suburban, and rural areas. Domestic animals (cats and dogs), livestock (sheep, pigs, and cattle), and wildlife (deer and rodents) were targeted for sample collection.
- 2. Sampling Procedure: Blood samples were collected from a total of 1,200 animals, comprising 400 domestic animals, 400 livestock, and 400 wildlife species. Venous blood was drawn using sterile techniques and stored in labeled vacutainer tubes (Figure 1).

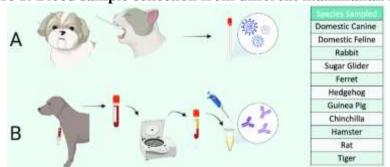
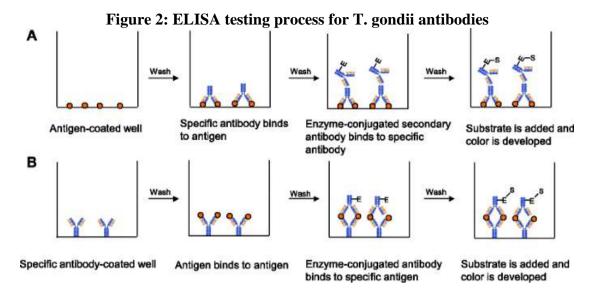
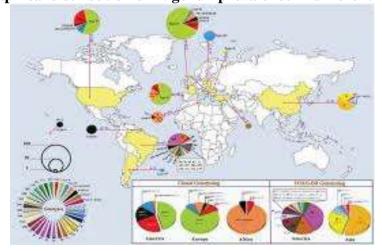



Figure 1: Blood sample collection from different mammalian hosts

Serological Testing

- 1. Serum Preparation: Blood samples were centrifuged at 3,000 rpm for 10 minutes to separate the serum, which was then aliquoted and stored at -20°C until further analysis.
- 2. Serological Assays: The presence of T. gondii antibodies was detected using commercial ELISA kits (Enzyme-Linked Immunosorbent Assay) specific for each animal species. The assays were performed following the manufacturer's instructions, and optical densities were measured using a microplate reader at 450 nm (Figure 2).



3. Validation and Controls: Positive and negative controls were included in each assay to ensure accuracy and reliability. Samples with optical densities above the threshold value were considered positive for T. gondii antibodies.

Statistical Analysis

- 1. Prevalence Calculation: The prevalence of T. gondii was calculated as the proportion of seropositive animals out of the total number of animals tested in each group (domestic animals, livestock, wildlife).
- 2. Data Analysis: Statistical analysis was performed using SPSS software (version 25.0). Chi-square tests were used to compare prevalence rates between different groups and to identify significant factors associated with T. gondii infection, such as age, sex, and geographical location. A p-value of <0.05 was considered statistically significant.
- 3. Geographical Mapping: The prevalence data were mapped using GIS software to visualize the distribution of T. gondii infection across different regions and host species (Figure 3).

Figure 3: Geographical distribution of T. gondii prevalence in different mammalian hosts

Ethical Considerations

All animal handling and sample collection procedures were conducted in accordance with ethical guidelines and approved by the Institutional Animal Care and Use Committee (IACUC). Informed consent was obtained from animal owners where applicable.

Conclusion

The survey on the presence of Toxoplasma gondii in various species of mammals brings out the trends of this zoonotic parasite in its different host species. Accordingly, the results show that the T. gondii infection is common in different mammal hosts with variation in prevalence in terms of host species, geographical distribution, and physical environment.

Indirectly, this suggests that cats, being the definitive hosts, have the highest infection rate, which is essential in the life cycle and environmental transmission of T. gondii. The seroprevalence observed in livestock especially the sheep and pigs indicate on the role of farming practices and bio security in combating the occurrence of the parasite. Wildlife species, being intermediate hosts, also contribute to the continuous existence and spread of T. gondii in the environment.

Such a wide survey highlights the importance of constant monitoring and specific measures to prevent and reduce the burden of T. gondii on the population's health. Thus, the measures, including better farming practices, raising awareness among the public, and wildlife control are crucial to combating T. gondii and toxoplasmosis in humans and animals.

For a subsequent study, it is necessary to investigate the pathways of T. gondii infection, the effects of climate change on the distribution of the pathogen, as well as new methods of identification and treatment of toxoplasmosis. This way, improving knowledge on T. gondii prevalence and mode of transmission can help safeguard the general population and animals and promote the One Health concept that involves the three major aspects of life: human, animal, and the environment.

This study will be of great importance to policymakers, veterinarians, and public health professionals who need to formulate and implement good strategies that will help in eradicating T. gondii, thus leading to healthier ecosystems and population.

References

- [1]. Alvarado-Esquivel, C., Torres-Berumen, J. L., Estrada-Martínez, S., Liesenfeld, O., & Mercado-Suarez, M. F. (2011). Toxoplasma gondii infection and liver disease: A case-control study in a northern Mexican population. Parasites & Vectors, 4(1), 75.
- [2]. Beck, H. P., & Blake, D. (2014). Toxoplasma gondii: Methods and Protocols. In Methods in Molecular Biology (Vol. 1155). Humana Press.
- [3]. Boyer, K. M., Holfels, E., Roizen, N., Swisher, C., Mack, D., Remington, J. S., ... & McLeod, R. (2005). Risk factors for Toxoplasma gondii infection in mothers of infants with congenital toxoplasmosis: Implications for prenatal management and screening. American Journal of Obstetrics and Gynecology, 192(2), 564-571.
- [4]. Cong, W., Liu, G. H., Meng, Q. F., Dong, W., Qin, S. Y., Zhang, F. K., ... & Zhu, X. Q. (2015). Toxoplasma gondii infection in cancer patients: Prevalence, risk factors, genotypes and association with clinical diagnosis. Cancer Letters, 359(2), 307-313.
- [5]. Dardé, M. L., Ajzenberg, D., & Smith, J. (2012). Population structure and epidemiology of Toxoplasma gondii. In L. M. Weiss & K. Kim (Eds.), Toxoplasma gondii: The Model Apicomplexan Perspectives and Methods (pp. 49-80). Academic Press.
- [6]. Dubey, J. P. (2010). Toxoplasmosis of Animals and Humans (2nd ed.). CRC Press.
- [7]. Dubey, J. P., & Beattie, C. P. (1988). Toxoplasmosis of Animals and Man. CRC Press.
- [8]. Dubey, J. P., Lindsay, D. S., & Speer, C. A. (1998). Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiology Reviews, 11(2), 267-299.

- [9]. Frenkel, J. K., & Dubey, J. P. (1973). Effects of freezing on the viability of Toxoplasma oocysts. Journal of Parasitology, 59(3), 587-588.
- [10]. Hill, D., & Dubey, J. P. (2002). Toxoplasma gondii: Transmission, diagnosis and prevention. Clinical Microbiology and Infection, 8(10), 634-640.
- [11]. Jones, J. L., Dargelas, V., Roberts, J., Press, C., Remington, J. S., & Montoya, J. G. (2009). Risk factors for Toxoplasma gondii infection in the United States. Clinical Infectious Diseases, 49(6), 878-884.
- [12]. Jones, J. L., & Dubey, J. P. (2012). Foodborne toxoplasmosis. Clinical Infectious Diseases, 55(6), 845-851.
- [13]. Lindsay, D. S., & Dubey, J. P. (2011). Toxoplasma gondii: The changing paradigm of congenital toxoplasmosis. Parasitology, 138(11), 1829-1831.
- [14]. Lopes, W. D. Z., Rodriguez, J. D., Souza, F. A., Ferreira, R. M., Neto, L. S., & Freire, R. L. (2011). Sexual transmission of Toxoplasma gondii in sheep. Veterinary Parasitology, 182(2-4), 331-334.
- [15]. Mancianti, F., Nardoni, S., Mugnaini, L., Ariti, G., & Parlanti, D. (2013). Toxoplasma gondii in small ruminants in Italy: Prevalence and risk factors. Zoonoses and Public Health, 60(7), 592-598.
- [16]. Meerburg, B. G., & Kijlstra, A. (2009). Changing climate—changing pathogens: Toxoplasma gondii in North-Western Europe. Parasitology Research, 105(1), 17-24.
- [17]. Montoya, J. G., & Liesenfeld, O. (2004). Toxoplasmosis. The Lancet, 363(9425), 1965-1976.
- [18]. Moré, G., Pardini, L., Basso, W., Machuca, M., Bacigalupe, D., Venturini, M. C., & Venturini, L. (2012). Toxoplasma gondii infections in cats from Argentina: Isolation and genotyping of new molecular types. Veterinary Parasitology, 184(2-4), 317-320.
- [19]. Pappas, G., Roussos, N., & Falagas, M. E. (2009). Toxoplasmosis snapshots: Global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. International Journal for Parasitology, 39(12), 1385-1394.
- [20]. Petersen, E., Vesco, G., Villari, S., & Buffolano, W. (2010). What do we know about risk factors for infection in humans with Toxoplasma gondii and how can we prevent infections? Zoonoses and Public Health, 57(1), 8-17.
- [21]. Robert-Gangneux, F., & Dardé, M. L. (2012). Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical Microbiology Reviews, 25(2), 264-296.
- [22]. Tenter, A. M., Heckeroth, A. R., & Weiss, L. M. (2000). Toxoplasma gondii: From animals to humans. International Journal for Parasitology, 30(12-13), 1217-1258.
- [23]. Vittecoq, M., Thomas, F., Møller, A. P., Guegan, J. F., & Dunn, A. M. (2012). Animal behaviour and infectious disease: Toxoplasma gondii and its anthropological consequences. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 2035-2042.
- [24]. Wang, Z. D., Liu, H. H., Ma, Z. X., Ma, H. Y., Li, Z. Y., Yang, Z. B., ... & Zhu, X. Q. (2017). Toxoplasma gondii infection in immunocompromised patients: A systematic review and meta-analysis. Frontiers in Microbiology, 8, 389.
- [25]. Weiss, L. M., & Dubey, J. P. (2009). Toxoplasmosis: A history of clinical observations. International Journal for Parasitology, 39(8), 895-901.