

EVALUATING THE IMPACT OF ENDOCRINE-DISRUPTING CHEMICALS ON FERTILITY IN WILDLIFE: FROM AMPHIBIANS TO MAMMALS

ISSN:3032-1085 https://doi.org/10.61796/jmgcb.v1i8.841

Sajjad Jawad Kadhim¹, Mohsin Abbas Sahib², Salam Mohammed Khlaif³, Mustafa Kareem AL-Azzawi⁴, Nabaa Abbas Zubaidi⁵

^{1,4,5}Department of Biology, College of Education for Pure Sciences, University of Wasit, Iraq

^{2,3}Department of Biology, College of Sciences, University of Wasit, Iraq

¹skadum@uowasit.edu.iq

²Mohsin.abbas@uowasit.edu.iq

3Salam900@uowasit.edu.iq

⁴Mustafa.kareem31333@gmail.com

5nahassan@uowasit.edu.iq

Received: Jun 22, 2024; Accepted: Jul 29, 2024; Published: Aug 16, 2024;

Abstract: Endocrine-disrupting chemicals are contaminants that interrelate with wildlife's endocrine systems, producing negative influences on reproductive health and growth. Industrial pollutants, medicines and pesticides are between the chemicals that have develop a main source of worry due to of their pervasiveness in the environment and capability to reason ecological damage. This study brings both present data on the effects of EDCs on reproductive health in a diversity of animal species, particularly birds, fish, frogs, and mammals. Amphibians, together their complex life cycles and pored skin are particularly susceptible to EDCs. In relation to studies, contact to chemicals such as atrazine able to damage sexual development, causing in slanted sex proportions and developmental irregularities. Fish, which are significant indicators of marine ecosystem health, exhibition changed sexual development and reproductive disappointments due to of EDCs like estrogenic compounds and PCBs. Birds are harmed via EDCs like DDT, which leading to reproductive failures and eggshell thinning, influencing general population health. Mammals, reaching from little rodents to enormous animals, developmental defects, display lower fertility and behavioral alterations in reply to EDC exposure. Such EDCs clearly and profoundly affect reproductive health via altering gene expression, blocking receptors and mimicking hormones. Studies provide wide-ranging insights for these pathways, while field investigations afford experimental evidence of the effects of EDCs. Bio-monitoring methods, like tissue analysis and health markers, are very important to determining exposure levels and results. Identifying the influence of EDCs on animal reproductive health is significant for conservation initiatives and emerging regulation. Effective regulations might contain limiting the usage of dangerous chemicals and establishing monitoring systems to checked EDC levels in environment and the animals. Conservation efforts must prioritize habitat management and refurbishment because offset the effects of EDCs and safeguard endangered species. This research confirms the requirement for ongoing research and work to address the issues presented via endocrine disruption in animal populations. The research will explore how toxic chemicals disturb nature reproduction via analyzing variations in mating habits, sexual development, and fertility. It will examine how these materials influence hormonal systems via inhibiting receptors and mimicking hormones. Additionally, the research will observe current legislation governing these chemicals, assess their effectiveness, and refer for greater animal protection.

Keywords: Reproductive Health, EDCs, Pesticides, Amphibians, Biomonitoring

Abstrak: Bahan kimia pengganggu endokrin adalah kontaminan yang saling terkait dengan sistem endokrin satwa liar, menghasilkan pengaruh negatif pada kesehatan reproduksi dan pertumbuhan. Polutan industri, obat-obatan dan pestisida merupakan beberapa bahan kimia yang telah menjadi sumber kekhawatiran utama karena penyebarannya yang luas di lingkungan dan kemampuannya untuk menyebabkan kerusakan ekologis. Penelitian ini memberikan data terbaru mengenai dampak EDC terhadap kesehatan reproduksi pada berbagai spesies hewan, terutama burung, ikan, katak, dan mamalia. Amfibi, dengan siklus hidupnya yang kompleks

dan kulit berpori-pori sangat rentan terhadap EDC. Dalam kaitannya dengan penelitian, kontak dengan bahan kimia seperti atrazin dapat merusak perkembangan seksual, menyebabkan proporsi jenis kelamin yang miring dan ketidakteraturan perkembangan. Ikan, yang merupakan indikator penting dari kesehatan ekosistem laut, menunjukkan perubahan perkembangan seksual dan kekecewaan reproduksi akibat EDC seperti senyawa estrogenik dan PCB. Burung-burung dirugikan melalui EDC seperti DDT, yang menyebabkan kegagalan reproduksi dan penipisan cangkang telur, yang mempengaruhi kesehatan populasi secara umum. Mamalia, mulai dari hewan pengerat kecil hingga hewan yang sangat besar, mengalami cacat perkembangan, menunjukkan tingkat kesuburan yang lebih rendah dan perubahan perilaku sebagai respons terhadap paparan EDC. EDC tersebut secara jelas dan mendalam memengaruhi kesehatan reproduksi melalui pengubahan ekspresi gen, pemblokiran reseptor, dan peniruan hormon. Studi memberikan wawasan yang luas untuk jalur ini, sementara investigasi lapangan memberikan bukti eksperimental tentang efek EDC. Metode pemantauan hayati, seperti analisis jaringan dan penanda kesehatan, sangat penting untuk menentukan tingkat dan hasil paparan. Mengidentifikasi pengaruh EDC terhadap kesehatan reproduksi hewan sangat penting untuk inisiatif konservasi dan peraturan yang muncul. Peraturan yang efektif dapat berupa pembatasan penggunaan bahan kimia berbahaya dan membangun sistem pemantauan untuk memeriksa tingkat EDC di lingkungan dan hewan. Upaya konservasi harus memprioritaskan pengelolaan dan perbaikan habitat untuk mengimbangi dampak EDC dan melindungi spesies yang terancam punah. Penelitian ini menegaskan perlunya penelitian dan upaya yang berkelanjutan untuk mengatasi masalah yang ditimbulkan oleh gangguan endokrin pada populasi hewan. Tujuan penelitian Penelitian ini akan mengeksplorasi bagaimana bahan kimia beracun mengganggu reproduksi alam dengan menganalisis variasi kebiasaan kawin, perkembangan seksual, dan kesuburan. Penelitian ini akan memeriksa bagaimana bahan-bahan ini mempengaruhi sistem hormonal melalui penghambatan reseptor dan peniruan hormon. Selain itu, penelitian ini juga akan mengamati peraturan yang berlaku saat ini yang mengatur bahan kimia ini, menilai keefektifannya, dan memberikan rekomendasi untuk perlindungan hewan yang lebih baik.

Kata kunci: Kesehatan Reproduksi, EDC, Pestisida, Amfibi, Biomonitoring

This is an open-acces article under the CC-BY 4.0 license

Introduction

Background and Significance

The Endocrine construction is a net of organs and glands create through the body. It is alike to the nervous system in that it lead a energetic role in monitoring and regulating numerous of the body's jobs. Endocrine glands are ductless glands of the endocrine system that hide their yields, hormones, straight into the blood. The chief glands of the endocrine system contain the pineal gland, testicles, pituitary gland, pancreas, ovaries, parathyroid gland, thyroid gland, adrenal glands and hypothalamus. The pituitary glands and hypothalamus are neuroendocrine tissues [1].

Endocrine-disrupting chemicals (EDCs) are resources that delay with the normal operational of endocrine systems in organisms, possibly leading to important health difficulties [2]. These chemicals be capable to imitative, block, or change hormonal signs, disabled the subtle balance of endocrine jobs that control growth, advance, and imitation. The universal attendance of EDCs in the environment, integrated with their capability to impact a varied kind of species, has prepared them a chief concern for environmental and community health [3].

The function of hormones in wildlife is vital, essentially for multiplicative health. Hormones for instance thyroid hormones, testosterone and estrogen regulate many physiological events, including sexual difference, reproductive behavior and gametogenesis [4]. Disruptions in these hormonal paths can lead to developmental abnormalities, lessened reproductive success, and population declines [5]. Certain the importance of reproductive health for maintaining healthy nature

populations, understanding the things of EDCs is vital for conservation and management pains [3].

Sources and Types of EDCs

Totally people are open to chemicals with estrogenic impacts in their usual life, due to endocrine disrupting chemicals are beginning in low dosages in thousands of products. Chemicals generally observed in people contain <u>polychlorinated biphenyls</u> (PCBs), <u>DDT</u>, <u>polybrominated diphenyl ethers</u> (PBDEs), <u>bisphenol A</u> (BPA), and a diversity of <u>phthalates</u>. Actually, approximately entirely plastic yields, including those promoted as BPA-free, have been presented to leach endocrine-disrupting chemicals [6]. In a 2011, learning it was present that certain BPA-free yields released more endocrine-active chemicals than the BPA-containing yields [7]. Additional forms of endocrine disruptors are <u>phytoestrogens</u> (plant hormones) [8].

EDCs are broadly distributed across various environments owing to their use in agriculture, industry, and household produces. Common sources include [9]:

- **a. Pesticides**: Chemicals like atrazine, DDT, and organophosphates are widely used in agriculture to control pests. These pollutants can enter water bodies through runoff, impacting aquatic life. [10].
- **b. Industrial Chemicals:** POPs, such as polychlorinated biphenyls (PCBs) and dioxins, are byproducts of industrial operations. These compounds are notable for their stability and long-term environmental presence [11].
- **c. Pharmaceuticals:** Hormonal medicines and other drugs can infiltrate ecosystems via wastewater and influence wildlife even at low amounts [12].
- **d. Personal Care Products**: Chemicals in items such as shampoos, lotions, and detergents can be sources of EDCs, affecting both terrestrial and aquatic species [13].

Impact on Wildlife Reproductive Health

For the reason that endocrine disruptors influence reproductive, complex metabolic and neuroendocrine systems, they cannot be modelled in an in vitro cell-based examination. Accordingly, animal models are beneficial for understanding the danger of endocrine-disrupting substances. [14].

Amphibians

Amphibians are among the most sensitive indicators of environmental health because of their transparent skin and complicated life cycles that include both aquatic and terrestrial stages [15], [16]. Research has shown that amphibians are very vulnerable to EDCs, which can lead to [17]:

- **a. Altered Sexual Development:** Chemicals like atrazine have been demonstrated to cause hermaphroditism and feminization in frogs, which affects their reproductive viability. [18].
- **b. Developmental Abnormalities:** Exposure to EDCs can cause physical malformations such as deformed limbs and incomplete metamorphosis, affecting survival rates and reproductive success [19].
- **c. Behavioral Changes:** Disruption of endocrine signals can change mating behaviors and call patterns, which are critical for reproductive success [20].

Fish

The endocrine systems of fish and mammals are comparable, hence zebrafish are a common laboratory choice [21]. Zebrafish perform fully as a typical organism, in part due to researchers can study them starting from the egg, which is practically transparent [21]. Furthermore, zebrafish have DNA sex markers, allowing researchers to assign sex to each fish uniquely; this is especially relevant for investigating endocrine disruptors, which can change how amongst extra things, the gender organs function. If sperm is found in the ovaries later on through testing, it may be attributed to the chemical without the possibility that the researcher discovered a genetic flaw since the intercourse. In addition

to being widely, available and simple to research through multiple life stages, zebrafish genes are comparable to humans'-70% of human genes containing a zebrafish complement, and 84% of illness genes in persons have a zebrafish counterpart. [21]; it is crucial to understand how disruptor's impact fish, which are also, model species.

Fish are essential to aquatic ecosystems and act as important biological indicators of the quality of the water. EDCs influence fish reproduction in numerous ways. [22]:

- **a. Sexual Differentiation:** Chemicals like PCBs and synthetic estrogens can create intersex disorders and skewed sex ratios, influencing population dynamics [23].
- **b. Reproductive Failures:** EDCs can impair fertility, diminish egg viability, and impact larval survival, resulting in lower population recruitment [23].
- **a. Behavioral Alterations:** Changes in spawning behavior and mate attractiveness can disrupt breeding cycles and affect populations of fish [24].

Birds

Birds, particularly those living in or near contaminated settings, face a variety of reproductive problems as a result of EDC exposure [25]:

- **a. Eggshell Thinning:** Complexes such DDT reason thinner eggshells, cumulative the chance of egg breakage and dropping hatch rates [25].
- **b. Reproductive Failures:** Changed hormone levels able influence breeding success and parental care, causing to a reduction in population numbers [26].
- **c. Population Declines:** Long-term exposition to EDCs able reason considerable population losses, particularly in species that are previously at risk [27].

Mammals

EDCs impact mammals of numerous sizes, from little rodents to greater species [28]:

- **a. Reduced Fertility:** EDCs can reason hormonal imbalances that damage reproductive function, leading to lower fertility rates [29].
- **b. Developmental Abnormalities:** Exposure can outcome in congenital defects and developing disorders in offspring [30].
- **c. Behavioral Changes:** Altered reproductive performances and maternal care have been experiential, impacting the survival and health of the young [31].

Mechanisms of Action

EDCs influence the reproductive system via multiple methods:

- **a. Hormone Mimicking:** Nearly EDCs mimic usual hormones, leading to inappropriate hormonal signaling and developmental issues [32].
 - **b. Hormone Receptor Blocking:** Chemicals which block hormone receptors are capable of inhibiting the regular interaction of natural hormones, affecting physiological processes [33].
- **c. Gene Expression Alteration:** EDCs may influence the activity of genes associated with reproduction, resulting in long-term effects on fertility [29].

Methods

Investigation Techniques

Investigation on EDCs classically employs a variety of methodologies [34]:

- **a.** Laboratory Studies: Organized investigates allow for detailed investigation into how specific EDCs affect generative health and apparatuses of action.
- **b. Field Studies:** Observational studies in usual surroundings offer real-world suggestion of EDC impacts, however they essential account for numerous environmental variables.

c. Biomonitoring: Methods for example tissue analysis and monitoring of generative health indicators aid assess exposure levels and effects.

Economic and Preservation Implications

Assessing the consequences of EDCs is critical for influencing policies and conservation measures [35]:

- **a. Regulatory Measures:** Effective laws can minimize the usage of dangerous chemicals and environmental pollution [36].
- **b.** Conservation Efforts: Habitat management and restoration are techniques that can help animal populations and lessen the impacts of EDCs [28].

Effects of EDCs on Amphibians

Overview of Amphibian Sensitivity

Amphibians are particularly susceptible to EDCs due to of their delicate skin and complex life periods. Their simultaneous aquatic and terrestrial phases offer them to a diversity of EDCs, that lead to making them perfect candidates for researching the influences of these materials [37].

Results and Discussion

Detailed Evaluation of Basic Studies

Table 1. Significant Studies on EDCs Affecting Amphibians

Study	EDC	Species	Vital Findings	Methodology	Reproductive Effects
[38]	Atrazine	Rana spp.	Enhanced femininity and hermaphrodite	Laboratory exposure	Changed sex growth
[39]	Atrazine, PCBs	Rana pipiens	Morphological abnormalities and delayed metamorphosis	Field and laboratory studies	deformed limbs, twisted metamorphosis.
(Bortnick et al., 2011)	BPA	Xenopus laevis	Interrupted gonadal development.	Laboratory studies	Irregular genital structure

- [38]: This research offered frogs to atrazine, which had a substantial impact on their sexuality, containing higher rates of hermaphroditism and feminization. The study employed controlled laboratory settings to distinct atrazine's influences on differentiated sexuality.
- [39]: The shared effects of atrazine and PCBs on Rana pipiens were examined. The study included both arena and laboratory components, and it revealed developing malformations like deformed limbs and erratic metamorphosis, highlighting the higher effects of EDCs on amphibians development.
- [40]: Concentrated on the effects of BPA on Xenopus laevis. The investigation found considerable changes in gonadal development, including aberrant appearance and function, highlighting the impact of endocrine disruptors on reproductive organs.

Modes of Action

EDCs for example atrazine and BPA affect amphibians through various mechanisms [41]:

- **Hormone Mimicry:** EDCs be able to mimic estrogen, leading to feminization and different generative development.
- **Thyroid Disruption:** Chemicals similar atrazine can interfere thru thyroid hormone signaling, affecting growth and metamorphosis.

Properties of EDCs on Fish Outline of Fish Sensitivity

Fish are usually exhibited for EDCs by contaminated water sources. Their reproductive systems are extremely sensitive to hormonal disturbances, making them critical indicators of aquatic health [42].

Comprehensive Analysis of Critical Research

Table 2. Significant Studies on EDCs Affecting Fish

Study	EDC	Species	Basic Findings	Methodology	Reproductive Effects
[43]	Ethinyl estradiol	Oncorhynchus mykiss	Development of intersex disorders.	Laboratory studies	Intersex circumstances and variable gonad morphology.
[44]	Estrogenic compounds	Rutilus rutilus	Different sexual variation and generative achievement	Field studies	Tilted sex ratios, summary fertility
[45]	PCBs	Ictalurus punctatus	Reduced fertility and irregular egg enlargement	Laboratory and field studies	Reduced egg capability, decreased reproductive achievement

- [43]: The present investigation subjected trout to ethinyl estradiol and documented the emergence of intersex abnormalities. The controlled laboratory setting enabled exact evaluation of hormonal disruption effects on gonadal development.
- [44]: Completed a thorough evaluation of estrogenic chemicals and their effects on fish species such as *Rutilus rutilus*. Field experiments found substantial differences in sexual differentiation and reproductive success, showing the pervasive influence of estrogenic contaminants.
- [45]: PCBs' impacts on *Ictalurus punctatus* were evaluated in both laboratory and field settings. The study found lower fertility and aberrant egg formation, suggesting the negative impact of persistent organic pollutants on fish reproductive.

Modes of Action

In fish, EDCs interrupt reproductive health via [42]:

- **Hormone Disruption:** Estrogenic complexes alter sex diversity, leading to intersex situations and twisted sex ratios.
- **Developmental Impairment:** PCBs influence gonadal progress and egg viability, affecting reproductive achievement.

Properties of EDCs on Birds

Outline of Bird Sensitivity

Birds become exposed to EDCs via polluted food, water, and nesting places. These substances can have a significant impact on the reproductive health of birds, hence affecting the total population health. [25].

Brief Overview of Critical Findings

Table 3: Basic Studies on EDCs Affecting Birds

Study	EDC	Species	Key Findings	Methodology	Reproductive Effects
[46]	DDT	Haliaeetus leucocephalus	Eggshell thinning and reproductive disappointment	Field studies	Concentrated hatch rates, population failures
[47]	PCBs, DDT	Arctic Terns	Population failures and reproductive issues	Field studies	Eggshell diminishing, reduced reproductive achievement
[48]	Atrazine	Erithacus rubecula	Different hormone levels and reproductive achievement	Laboratory studies	Alterations in reproductive performance, compact fertility

- [46]: DDT was found to cause substantial eggshell loss and decline in reproduction in bald eagles. The study used field data to link chemical exposure to decreased reproductive success and population health.
- [47]: The impact of PCBs and DDT on Arctic terns has been documented, demonstrating major reproductive difficulties and population decreases. The study assessed the ecological impacts of chemical exposure through long-term field monitoring.
- [48]: Atrazine's impacts on European robins were investigated, and hormone levels and reproductive behavior were shown to be affected. Laboratory investigations have shown that atrazine has a direct influence on avian reproductive health.

Mechanisms of Action

In birds, EDCs influence reproductive health via [25]:

- **Estrogen Mimicry:** Chemicals similar DDT and PCBs mimic estrogen, producing eggshell thinning and reproductive issues.
- **Hormonal Disruption:** Atrazine adjusts hormonal regulation, impacting reproductive performance and fertility.

The impact of EDCs on mammals

Mammalian Sensitivity Overview

Mammals are faced with EDCs from a variety of sources, including food, water, and soil. These substances can cause serious reproductive and developmental disorders [49].

Comprehensive Evaluation of Main Studies

Table 4: Crucial Studies on EDCs Affecting Mammals

Study	EDC	Species	Key Findings	Methodology	Reproductive Effects
[50]	Phthalates	Rattus norvegicus	Reduced fertility and reproductive abnormalities	Laboratory studies	Decreased sperm quality, reproductive organ abnormalities
[51]	BPA	Mus musculus	Altered sexual development and reproductive function	Laboratory studies	Hormonal imbalances, altered sexual behavior
[52]	PCBs	Odocoileus virginianus	Reproductive dysfunction and hormonal imbalances	Field studies	Reduced fertility, altered hormone levels

- Gray et al. (2001): Researchers looked into the effects of phthalates on rats and reported decreased fertility and reproductive difficulties. Laboratory experiments provide specific details on how phthalates harm reproductive organs and sperm quality.
- **vom Saal & Welshons** (2006): The study focused on BPA's impact on mice, which indicated significant differences in sexual development and reproductive function. Hormone imbalances and changes in sexual behavior were discovered by laboratory studies.
- **Bertram et al. (2006)**: PCBs have been demonstrated to induce reproductive defects and hormonal imbalances in deer populations. Field experiments demonstrated that these pollutants have far-reaching ecological consequences on mammalian reproduction.

Mode of Action

In animals, EDCs affect fertility via:

- **Hormonal Disruption:** Chemicals such BPA and phthalates disrupt hormone signaling, resulting in disorders of reproduction.
- **Developmental Effects:** EDCs can alter the structure and function of reproductive organs, affecting fertility and maturation.

Comparative Analysis and Implications Competitive Overview

Table 5: Comparative Impact of EDCs on Wildlife Species [53], [54]

Species	Popular EDCs	Critical Reproductive	Mode of Action
		Effects	
Amphibians	Atrazine, BPA	Feminization, deformities	Hormone mimicking
			and thyroid dysfunction
Fish	Ethinyl estradiol,	Intersex circumstances,	Hormone instability and
	PCBs	lower fertility	developmental
			retardation.
Birds	Ethinyl estradiol,	Eggshell thinning and	Estrogen mimicking and
	PCBs	failure of reproduction.	hormonal influence

Mammals	Phthalates, BPA	Reduced fertility and	Hormonal disturbance
		developmental	and impaired fertility.
		abnormalities.	

Conclusion

The assessment of prior studies demonstrates the widespread influence of EDCs on reproductive health in a variety of animal species. A detailed valuation of important research discloses important insights into the procedures thru which these materials change endocrine systems and affect reproductive achievement. This whole information is critical for scheming real conservation strategies and regulatory events to safeguard species from the negative penalties of endocrine disruption.

The results of these investigates highpoint the requirement for effective regulations to control EDCs and bound their effects on wildlife. Preservation initiatives should prioritize lowering EDC contact through habitat conservation and pollution management. Furthermore, increased monitoring and research are essential to better appreciate and manage the long-term significances of EDCs on animal populations.

References

- [1] I. J. Clarke, "Hypothalamus as an endocrine organ," *Comprehensive Physiology*, vol. 5, no. 1, pp. 217–253, 2011.
- [2] B. Yilmaz, H. Terekeci, S. Sandal, and F. Kelestimur, "Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention," *Reviews in endocrine and metabolic disorders*, vol. 21, pp. 127–147, 2020.
- [3] S. Hassan *et al.*, "Endocrine disruptors: Unravelling the link between chemical exposure and Women's reproductive health," *Environmental research*, vol. 241, p. 117385, 2024.
- [4] R. Ghosal *et al.*, "Biomarkers of reproductive health in wildlife and techniques for their assessment," *Theriogenology Wild*, vol. 3, p. 100052, 2023.
- [5] L. D. Arcand-Hoy and W. H. Benson, "Fish reproduction: an ecologically relevant indicator of endocrine disruption," *Environmental Toxicology and Chemistry: An International Journal*, vol. 17, no. 1, pp. 49–57, 1998.
- [6] C. Z. Yang, S. I. Yaniger, V. C. Jordan, D. J. Klein, and G. D. Bittner, "Most plastic products release estrogenic chemicals: a potential health problem that can be solved," *Environmental health perspectives*, vol. 119, no. 7, pp. 989–996, 2011.
- [7] C. M. Metz, "Bisphenol A: Understanding the controversy," *Workplace health & safety*, vol. 64, no. 1, pp. 28–36, 2016.
- [8] H. Frumkin, Environmental health: from global to local. John Wiley & Sons, 2016.
- [9] M. F. Rahman, E. K. Yanful, and S. Y. Jasim, "Endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in the aquatic environment: implications for the drinking water industry and global environmental health," *Journal of water and health*, vol. 7, no. 2, pp. 224–243, 2009.
- [10] M. Syafrudin et al., "Pesticides in drinking water—a review," International journal of

- environmental research and public health, vol. 18, no. 2, p. 468, 2021.
- [11] P. Anerao, R. Kaware, A. kumar Khedikar, M. Kumar, and L. Singh, "Phytoremediation of persistent organic pollutants: Concept challenges and perspectives," *Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water*, pp. 375–404, 2022.
- [12] K. E. Arnold *et al.*, "Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems," 2013, *The Royal Society*.
- [13] F. A. Caliman and M. Gavrilescu, "Pharmaceuticals, personal care products and endocrine disrupting agents in the environment–a review," *CLEAN–Soil, Air, Water*, vol. 37, no. 4-5, pp. 277–303, 2009.
- [14] H. B. Patisaul, S. E. Fenton, and D. Aylor, "Animal models of endocrine disruption," *Best Practice & Research Clinical Endocrinology & Metabolism*, vol. 32, no. 3, pp. 283–297, 2018.
- [15] V. D. W. Sumanasekara, D. Dissanayake, and H. T. J. Seneviratne, "Review on use of amphibian taxa as a bio-indicator for watershed health and stresses," in *NBRO Symposium Proceedings*, 2015.
- [16] M. K. AL-Azzawi, N. A. Hasan, and M. M. Barrak, "A REVIEW OF THE DEVELOPMENT OF AN UNDERSTANDING OF ANTIBIOTIC INTERACTIONS, FROM MECHANISMS OF ACTION TO NOVEL RESISTANCE AND THE SEARCH FOR NATURAL ALTERNATIVES," European Journal of Medical Genetics and Clinical Biology, vol. 1, no. 6, 2024.
- [17] D. Crump, "The effects of UV-B radiation and endocrine-disrupting chemicals (EDCs) on the biology of amphibians," *Environmental Reviews*, vol. 9, no. 2, pp. 61–80, 2001.
- [18] T. B. Hayes *et al.*, "Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis)," *Proceedings of the National Academy of Sciences*, vol. 107, no. 10, pp. 4612–4617, 2010.
- [19] H. J. Hamlin and L. J. Guillette Jr, "Birth defects in wildlife: the role of environmental contaminants as inducers of reproductive and developmental dysfunction," *Systems biology in reproductive medicine*, vol. 56, no. 2, pp. 113–121, 2010.
- [20] K. Shenoy and P. H. Crowley, "Endocrine disruption of male mating signals: ecological and evolutionary implications," *Functional Ecology*, vol. 25, no. 3, pp. 433–448, 2011.
- [21] H. Segner, "Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption," *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, vol. 149, no. 2, pp. 187–195, 2009.
- [22] R. Rao, "Toxicity Study of Endocrine Disrupting Chemicals (EDCs) on Freshwater Fish Cyprinus Carpio," 2018, *National Institute of Technology Karnataka, Surathkal*.
- [23] E. F. Orlando and L. J. Guillette Jr, "Sexual dimorphic responses in wildlife exposed to endocrine disrupting chemicals," *Environmental Research*, vol. 104, no. 1, pp. 163–173, 2007.
- [24] J. C. Jones and J. D. Reynolds, "Effects of pollution on reproductive behaviour of fishes," *Reviews in Fish Biology and Fisheries*, vol. 7, pp. 463–491, 1997.

- [25] M. A. Ottinger and K. D. M. Dean, "Actions of toxicants and endocrine disrupting chemicals in birds," in *Sturkie's avian physiology*, Elsevier, 2022, pp. 1373–1404.
- [26] J. C. Wingfield and R. M. Sapolsky, "Reproduction and resistance to stress: when and how," *Journal of neuroendocrinology*, vol. 15, no. 8, pp. 711–724, 2003.
- [27] P. Matthiessen, J. R. Wheeler, and L. Weltje, "A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations," *Critical reviews in toxicology*, vol. 48, no. 3, pp. 195–216, 2018.
- [28] V. L. Marlatt *et al.*, "Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans," *Environmental Research*, vol. 208, p. 112584, 2022.
- [29] A. Ghosh, A. Tripathy, and D. Ghosh, "Impact of endocrine disrupting chemicals (EDCs) on reproductive health of human," in *Proceedings of the zoological society*, Springer, 2022, pp. 16–30.
- [30] N. Roeleveld, G. A. Zielhuis, and F. Gabreels, "Occupational exposure and defects of the central nervous system in offspring," *Occupational and Environmental Medicine*, vol. 47, no. 9, pp. 580–588, 1990.
- [31] S. Meylan, D. B. Miles, and J. Clobert, "Hormonally mediated maternal effects, individual strategy and global change," *Philosophical Transactions of the Royal Society B: Biological Sciences*, vol. 367, no. 1596, pp. 1647–1664, 2012.
- [32] K. Yoon, S. J. Kwack, H. S. Kim, and B.-M. Lee, "Estrogenic endocrine-disrupting chemicals: molecular mechanisms of actions on putative human diseases," *Journal of Toxicology and Environmental Health, Part B*, vol. 17, no. 3, pp. 127–174, 2014.
- [33] M. M. Tabb and B. Blumberg, "New modes of action for endocrine-disrupting chemicals," *Molecular endocrinology*, vol. 20, no. 3, pp. 475–482, 2006.
- [34] H.-S. Chang, K.-H. Choo, B. Lee, and S.-J. Choi, "The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water," *Journal of hazardous materials*, vol. 172, no. 1, pp. 1–12, 2009.
- [35] C. W. Tubbs and C. E. McDonough, "Reproductive impacts of endocrine-disrupting chemicals on wildlife species: implications for conservation of endangered species," *Annual review of animal biosciences*, vol. 6, no. 1, pp. 287–304, 2018.
- [36] F. Ramón and C. Lull, "Legal measures to prevent and manage soil contamination and to increase food safety for consumer health: The case of Spain," *Environmental Pollution*, vol. 250, pp. 883–891, 2019.
- [37] D. O. Norris, "Environmental influences on hormones and reproduction in amphibians," in *Hormones and Reproduction of Vertebrates, Volume 2*, Elsevier, 2024, pp. 257–289.
- [38] T. B. Hayes *et al.*, "Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses," *Proceedings of the National Academy of sciences*, vol. 99, no. 8, pp. 5476–5480, 2002.
- [39] J. R. Rohr *et al.*, "Agrochemicals increase trematode infections in a declining amphibian species," *Nature*, vol. 455, no. 7217, pp. 1235–1239, 2008.

- [40] B. Bortnick et al., "No Title," Journal of Affective Disorders, vol. 128, Issue, no. 1–2, pp. 83–94, 2011.
- [41] S. F. Ghanem, "Effect of Endocrine Disrupting Chemicals Exposure on Reproduction and Endocrine Functions Using the Zebrafish Model," *Egyptian Journal of Aquatic Biology and Fisheries*, vol. 25, no. 5, pp. 951–981, 2021.
- [42] O. Carnevali, S. Santangeli, I. Forner-Piquer, D. Basili, and F. Maradonna, "Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes?," *Fish physiology and biochemistry*, vol. 44, pp. 1561–1576, 2018.
- [43] T. R. Tyler, "Psychological perspectives on legitimacy and legitimation," *Annu. Rev. Psychol.*, vol. 57, no. 1, pp. 375–400, 2006.
- [44] J. P. Sumpter and S. Jobling, "Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment.," *Environmental health perspectives*, vol. 103, no. suppl 7, pp. 173–178, 1995.
- [45] M. G. Santos, L. Ferramacho, M. B. Silva, A. Amblard, and A. Cooray, "Fast large volume simulations of the 21-cm signal from the reionization and pre-reionization epochs," *Monthly Notices of the Royal Astronomical Society*, vol. 406, no. 4, pp. 2421–2432, 2010.
- [46] R. Peakall, "A new technique for monitoring pollen flow in orchids," *Oecologia*, vol. 79, pp. 361–365, 1989.
- [47] R. J. Norstrom, M. Simon, J. Moisey, B. Wakeford, and D. V. C. Weseloh, "Geographical distribution (2000) and temporal trends (1981–2000) of brominated diphenyl ethers in Great Lakes herring gull eggs," *Environmental science & technology*, vol. 36, no. 22, pp. 4783–4789, 2002.
- [48] A. Rattner and J. Nathans, "The genomic response to retinal disease and injury: evidence for endothelin signaling from photoreceptors to glia," *Journal of Neuroscience*, vol. 25, no. 18, pp. 4540–4549, 2005.
- [49] K. E. Pelch, J. M. Beeman, B. A. Niebruegge, S. R. Winkeler, and S. C. Nagel, "Endocrine-disrupting chemicals (EDCs) in mammals," *Hormones and reproduction of vertebrates*, pp. 329–371, 2011.
- [50] R. Gray, M. Javad, D. M. Power, and C. D. Sinclair, "Social and environmental disclosure and corporate characteristics: A research note and extension," *Journal of business finance & accounting*, vol. 28, no. 3-4, pp. 327–356, 2001.
- [51] F. S. Vom Saal and W. V Welshons, "Large effects from small exposures. II. The importance of positive controls in low-dose research on bisphenol A," *Environmental research*, vol. 100, no. 1, pp. 50–76, 2006.
- [52] S. M. Bertram, J. D. Schade, and J. J. Elser, "Signalling and phosphorus: correlations between mate signalling effort and body elemental composition in crickets," *Animal Behaviour*, vol. 72, no. 4, pp. 899–907, 2006.
- [53] S. Jobling and C. R. Tyler, "Introduction: the ecological relevance of chemically induced endocrine disruption in wildlife," *Environmental health perspectives*, vol. 114, no. Suppl 1, pp. 7–8, 2006.

[54] M. K. QASIM, Z. N. AL-SAADI, and J. F. ALI, "Phenotypic and Genotypic Identification, Antibiogram of MRSA Isolated from Patients in Wasit city.," *International Journal of Pharmaceutical Research* (09752366), 2020.