APPLICATION OF DATA MINING TO PREDICT DISTRO CLOTHING SALES USING THE K-MEANS CLUSTERING METHOD
Downloads
Objective: The research aims to classify distro clothing products at Aldi Store according to sales levels to support more effective inventory and marketing strategies. Method: Data processing was conducted using Google Colaboratory, applying the K-Means Clustering algorithm combined with evaluation metrics including the Silhouette Coefficient, Calinski-Harabasz Index, and Davies-Bouldin Index to determine the optimal cluster structure. Results: The analysis shows that K-Means successfully groups sales patterns with strong cluster performance, indicated by a Silhouette Coefficient of 0.576, a Calinski-Harabasz Index of 19.125, and a Davies-Bouldin Index of 0.308, reflecting high cohesion and clear separation among clusters. Novelty: This study integrates multiple validity indices within a practical retail context, demonstrating a robust clustering approach that enhances customer segmentation accuracy and provides actionable insights for strategic decision-making in product management.
R. G. Solechati and A. Jananto, “Penerapan Algoritma K-Means Clustering Pada Data Brain Stroke Untuk Pengelompokan Profile Pasien,” semanTIK, vol. 9, no. 1, p. 39, 2023, doi: 10.55679/semantik.v9i1.29446.
R. Maulana, “OPTIMISASI PENGGUNAAN ALGORITMA MACHINE LEARNING,” vol. 1, no. 6, pp. 1–16, 2024.
C. Purnama, W. Witanti, and P. Nurul Sabrina, “Klasterisasi Penjualan Pakaian untuk Meningkatkan Strategi Penjualan Barang Menggunakan K-Means,” J. Inf. Technol., vol. 4, no. 1, pp. 35–38, 2022, doi: 10.47292/joint.v4i1.79.
A. T. Suseno, A. R. Naufal, and M. Al Amin, “Market Based Analysis Sebagai Peningkatan Penjualan Produk Menggunakan Algoritma K-Medoids Dan Fp-Growth,” J. Tek. Inf. dan Komput., vol. 5, no. 2, p. 301, 2022, doi: 10.37600/tekinkom.v5i2.646.
P. Putra, “PENGEMBANGAN MODEL PREDIKSI RISIKO KREDIT,” vol. 1, no. 6, pp. 1–18, 2024.
O. B. Ginting, A. Anita, and E. Y. Tumanggor, “Penerapan Metode Trend Moment Untuk Memprediksi Jumlah Penjualan Dan Stok Kopi Pada Omilen Coffee,” J. Tekinkom (Teknik Inf. dan Komputer), vol. 7, no. 1, pp. 395–401, 2024, doi: 10.37600/tekinkom.v7i1.1332.
I. B. Perkasa and I. Komputer, “STRATEGI DATA MINING UNTUK IDENTIFIKASI POLA,” vol. 1, no. 6, pp. 1–16, 2024.
R. Dwi Putra, “Klasifikasi Penjualan Produk Customer Relationship Management dengan Algoritma K-Nearest Neighbors,” J. Comput. Scine Inf. Technol., vol. 8, pp. 48–55, 2022, doi: 10.35134/jcsitech.v8i2.34.
Ismai, “Metode Klasifikasi Menentukan Kenaikan Level UKM Bandung Timur Dengan Algoritma Naive Bayes Pada Sistem JURAGAN Berbasis Komunitas,” vol. 03, no. 01, pp. 24–31, 2020.
N. Farida, M. T. Chulkamdi, and Z. Wulansari, “Application of Data Mining By Using a Priori Algorithm To Improve Customer Purchasing Decisions At Mikamart Blitar Store,” Int. J. Multidiscip. Res. Lit., vol. 1, no. 5, pp. 526–534, 2022, doi: 10.53067/ijomral.v1i5.58.
R. Komansilan, V. Tarigan, and A. Yusupa, “Analisis Perbandingan Metode Trend Moment dan Regresi Linear Untuk Meramal Harga Saham Bank BRI,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 7, no. 1, p. 24, 2024, doi: 10.53513/jsk.v7i1.9474.
L. P. Dalova, Nurmawanti, N. E. Faizah, and S. B. Syahputro, “Efektifitas Penerapan Customer Relationship Management Pada Usaha Jasa Desain Iklan Citra Karya Setia (Advertising & Digital Printing) Melalui Pemasaran Electronic Word of Mouth (E-Wom),” Neraca Manajemen, Akunt. Ekon., vol. 1, no. 3, pp. 1–17, 2023.
A. Nugraha, O. Nurdiawan, and G. Dwilestari, “PENERAPAN DATA MINING METODE K-MEANS CLUSTERING UNTUK ANALISA PENJUALAN PADA TOKO YANA SPORT,” 2022.
N. Luh, P. P. Dewi, I. Nyoman Purnama, and N. W. Utami, “Penerapan Data Mining Untuk Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: STMIK Primakara),” Jurnal Ilmiah Teknologi Informasi Asia, vol. 16, no. 2, 2022.
S. Keputusan Dirjen Penguatan Riset dan Pengembangan Ristek Dikti, I. Setiawan Mangku Negara, I. Ahmad Ashari, P. Studi Teknologi Informasi, F. Sains dan Teknologi, and U. Harapan Bangsa, “Terakreditasi SINTA Peringkat 4 Analisa Cluster Data Transaksi Penjualan Minimarket Selama Pandemi Covid-19 dengan Algoritma K-means,” 2021.
Copyright (c) 2025 Shafa Arrizqa Az Zahroh, Nuril Lutvi Azizah , Novia Ariyanti, Irwan Alnarus Kautsar

This work is licensed under a Creative Commons Attribution 4.0 International License.














