TECHNOLOGY FOR EXTRACTING HIGH-QUALITY GRAPHITE BASED ON A COMBINATORIAL PROCESSING SCHEME
Downloads
Objective: This study aims to develop an integrated and environmentally adaptive processing technology for producing high-purity graphite suitable for advanced industrial applications. Method: A combinatorial scheme was implemented, involving multi-stage flotation enrichment, pyrometallurgical treatment at 900–1000°C, and hydrometallurgical leaching using hydrochloric acid. Results: Flotation increased the carbon content to 94%, while subsequent thermal and chemical treatments further enhanced the purity to 98.4% carbon with an ash content of only 0.74%. Comparative analysis revealed that hydrochloric acid was more effective than nitric acid in removing mineral impurities. Novelty: The study introduces a unified technological pipeline that combines flotation, thermal processing, and hydrometallurgical leaching—providing a cleaner and more sustainable alternative to conventional acid-intensive purification methods. This approach not only improves graphite quality but also reduces environmental hazards, offering practical value to the energy, nuclear, and metallurgical industries.
V. I. Bragina и I. I. Baksheeva, «Development of Graphite Ore Beneficiation Technology», Min. Inf. Anal. Bull., сс. 133–137, 2012.
F. Syarifuddin, F. F. Florena, E. S. Hanam, и others, «Effect of Acid Leaching on Upgrading the Graphite Concentrate from West Kalimantan (Indonesia)», в AIP Conference Proceedings, 2016. doi: 10.1063/1.4941905.
W. Xie, Z. Wang, J. Kuang, и others, «Fixed Carbon Content and Reaction Mechanism of Natural Microcrystalline Graphite Purified by Hydrochloric Acid and Sodium Fluoride», Int. J. Miner. Process., сс. 45–54, 2016, doi: 10.1016/j.minpro.2016.08.002.
K. P. Vlasov, Graphite as a High-Temperature Material. Mir, Moscow, 1964.
E. I. Zhmurikov, I. A. Bubnenkov, и V. V. Dremov, Graphite in Science and Nuclear Technology. Novosibirsk, 2013.
T. Enoki, M. Suzuki, и M. Endo, Graphite Intercalation Compounds and Applications. Oxford University Press, 2003.
P. Brodie, Graphite: Properties, Applications and Future Outlook. Nova Science Publishers, 2014.
M. O. Oliynyk и A. I. Makachova, «Improvement of the Graphite Raw Material Balancing Technology of Zavallia Deposit», Min. Bull., сс. 210–215, 2014.
W. Peng, Y. Qiu, L. Zhang, и others, «Increasing the Fine Flaky Graphite Recovery in Flotation via a Combined Multiple Treatments Technique of Middlings», Minerals, с. 208, 2017, doi: 10.3390/min7110208.
M. S. Dresselhaus и G. Dresselhaus, Intercalation Compounds of Graphite. Springer, 2002.
S. V. Belyaev, G. A. Koroleva, S. I. Lytkina, и others, «Promising Methods for Preparing Foundry Graphite», J. Sib. Fed. Univ. Eng. Technol., сс. 462–466, 2014.
K. Zaghiba, X. Song, A. Guerfi, и others, «Purification Process of Natural Graphite as Anode for Li-ion Batteries: Chemical versus Thermal», J. Power Sources, сс. 8–15, 2003, doi: 10.1016/S0378-7753(03)00116-2.
S. F. Ding и Y. P. Niu, «Research on Purification Technics of Some Flake Graphite», Adv. Mater. Res., сс. 753–755, 2013, doi: 10.4028/www.scientific.net/amr.753-755.119.
H. T. Thi и N. D. Hong, «Sulfuric Acid Leaching Process for Producing High Purity Graphite from 92.6 % C to 98 % C», World J. Res. Rev., сс. 23–26, 2017.
S. Tambanis и G. Chiappini, «Thermal Processing Achieves up to 99.99994 % Purity of Mahenge Graphite Concentrates». Black Rock Mining Limited, с. 4, 2016 y.
Copyright (c) 2025 Sadullayev Bakhtiyor Samidinovich

This work is licensed under a Creative Commons Attribution 4.0 International License.














