Navigating the Immune Response Landscape of Hepatitis B and Hepatitis C Virus Infections
Downloads
Both the hepatitis B virus (HBV) and the hepatitis C virus (HCV) are viral pathogens that primarily target the liver and can lead to chronic liver disease. The nature of the immune response that the host mounts can vary depending on the structural differences between these two viruses. HBV is a partially double-stranded DNA virus enveloped in an outer envelope with a relatively stable genome and limited antigenic variation. It consists of an inner nucleocapsid core containing viral DNA, viral polymerase, and core antigen (HBcAg). The envelope comprises surface antigens (HBsAg) important for viral entry and immune recognition. HCV is a single-stranded RNA virus with an envelope. It has a high degree of genetic diversity due to its error-prone RNA polymerase, resulting in multiple HCV genotypes and subtypes due to its high mutation rate. Both viruses activate innate immune responses, producing type I interferons (IFNs) and pro-inflammatory cytokines. HBV can actively fight these antiviral responses in several ways, such as by making viral proteins that mess up the innate immune signalling pathways. At the same time, HCV developed strategies to evade and modulate the host's innate immune system, allowing it to establish persistent infections. The adaptive immune response against HBV and HCV involves both humoral and cellular components. Antibodies against HBsAg (anti-HBs) are critical for viral clearance and protection. CD8+ T cells are also very important for controlling HBV infection because they find and kill infected hepatocytes. During infection, HCV-specific antibodies and CD4+ and CD8+ T cells are made. However, HCV can evade immune responses by rapidly mutating its surface proteins (e.g., E2) and modulating T-cell responses. It is important to note that the immune response to HBV and HCV is a complex and dynamic process that involves various factors beyond the structural differences described above. Host factors, viral load, viral persistence, and the interplay between innate and adaptive immune responses also significantly influence the outcome of the infection
White, P.A., Netzler, N.E. and Hansman, G.S., 2016.Foodborne viral pathogens. CRC Press.
Hoofnagle, J.H., Nelson, K.E. and Purcell, R.H., 2012. Hepatitis e. New England Journal of Medicine, 367(13), pp.1237-1244.
Acorn, C. J., Millar, C. C., Hoffman, S. K., and Lyle, W. M. (1995). Viral hepatitis: a review. Optom. Vis. Sci. 72, 763–769. doi: 10.1097/00006324-199510000-00010
Rasche, A., Sander, A.-L., Corman, V. M., and Drexler, J. F. (2019). Evolutionary biology of human hepatitis viruses. J. Hepatol. 70, 501–520. doi: 10.1016/j.jhep.2018.11.010
Hughes, S. A., Wedemeyer, H., and Harrison, P. M. (2011). Hepatitis delta virus. Lancet 378, 73–85. doi: 10.1016/S0140-6736(10)61931-9
Tu, H., Lai, X., Li, J., Huang, L., Liu, Y. and Cao, J., 2019. Interleukin-26 is overexpressed in human sepsis and contributes to inflammation, organ injury, and mortality in murine sepsis. Critical Care, 23(1), pp.1-12.
Smith, D. B., and Simmonds, P. (2018). Classification and genomic diversity of enterically transmitted hepatitis viruses. Cold Spring Harb. Perspect. Med. 8:a031880. doi: 10.1101/cshperspect.a031880
Lester, S. N., and Li, K. (2014). Toll-like receptors in antiviral innate immunity. J. Mol. Biol. 426, 1246–1264. doi: 10.1016/j.jmb.2013.11.024
Streicher, F., and Jouvenet, N. (2019). Stimulation of innate immunity by host and viral RNAs. Trends Immunol. 40, 1134–1148. doi: 10.1016/j.it.2019.10.009
Koyama, S., Ishii, K. J., Coban, C., and Akira, S. (2008). Innate immune response to viral infection. Cytokine 43, 336–341. doi: 10.1016/j.cyto.2008.07.009
Wan, D., Jiang, W., and Hao, J. (2020). Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front. Immunol. 11:615. doi: 10.3389/fimmu.2020.00615
Carty M, Guy C, Bowie AG. ,2021. Detection of viral infections by innate immunity. Biochemical pharmacology,1(183):pp114316.
Wang, Y., Cui, L., Yang, G., Zhan, J., Guo, L., Chen, Y., et al. (2019). Hepatitis B e antigen inhibits NF-κB activity by interrupting K63-linked ubiquitination of NEMO. J. Virol. 93:e0667-18. doi: 10.1128/JVI.00667-18
Gao, B. (2016). Basic liver immunology. Cell Mol. Immunol. 13, 265–266. doi: 10.1038/cmi.2016.09
Ringelhan, M., Pfister, D., O’Connor, T., Pikarsky, E., and Heikenwalder, M. (2018). The immunology of hepatocellular carcinoma. Nat. Immunol. 19, 222–232. doi: 10.1038/s41590-018-0044-z
Gao, B., Jeong, W.-I., and Tian, Z. (2008). Liver: an organ with predominant innate immunity. Hepatology 47, 729–736. doi: 10.1002/hep.22034
Gao, B., Seki, E., Brenner, D. A., Friedman, S., Cohen, J. I., Nagy, L., et al. (2011). Innate immunity in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G516–G525. doi: 10.1152/ajpgi.00537.2010
Liu, Y., Li, J., Chen, J., Li, Y., Wang, W., Du, X., et al. (2015). Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J. Virol. 89, 2287–2300. doi: 10.1128/JVI.02760-14
Yi, Z., Chen, J., Kozlowski, M., and Yuan, Z. (2015). Innate detection of hepatitis B and C virus and viral inhibition of the response. Cell Microbiol. 17, 1295–1303. doi: 10.1111/cmi.12489
Feng, Z., and Lemon, S. M. (2019). Innate immunity to enteric hepatitis viruses. Cold Spring Harb. Perspect. Med. 9:a033464. doi: 10.1101/cshperspect.a033464
Hong, Y., Zhou, L., Xie, H., and Zheng, S. (2015). Innate immune evasion by hepatitis B virus-mediated downregulation of TRIF. Biochem. Biophys. Res. Commun. 463, 719–725. doi: 10.1016/j.bbrc.2015.05.130
Jawetz, Melnick, & Adelberg.,2013. hepatitis viruses.Medical Microbiology. Brooks G F, Butel J S & Morse S A. (eds.) 26th (eds.). Appleton and Lange. Lurman. Eine Icterusepidemie. Berlin Klin Wschr, 1885, pp.20-22.
Saha, S., Sikdar, P., Lavanya, D. and Babu, M.N., 2016. An Overview on Hepatitis and its Prevention. International Journal of Pharma And Chemical Research, 2(4), pp.210-219.
Jefferies, M., Rauff, B., Rashid, H., Lam, T. and Rafiq, S., 2018. Update on global epidemiology of viral hepatitis and preventive strategies. World journal of clinical cases, 6(13), p.589.
Mohammed, M.O., Hasan, A.B. and Maarouf, F.B., 2019. Epidemiological Study of Hepatitis B, C and HIV Cases among the Foreigners Visiting Sulaimani City from 2013 Through 2016. Kurdistan Journal of Applied Research, pp.211-223.
Revill, P.A., Chisari, F.V., Block, J.M., Dandri, M., Gehring, A.J., Guo, H., Hu, J.,Kramvis, A., Lampertico, P., Janssen, H.L. and Levrero, M., 2019. A global scientific strategy to cure hepatitis B.The Lancet Gastroenterology & Hepatology, 4(7), pp.545-558.
Robotis JF, Boleti H., 2007.Viral Hepatitis. xPharm. The Comprehensive Pharmacology Reference,1–10. doi: 10.1016/B978-008055232-3.60928-6.
Yates, S., Penning, M., Goudsmit, J., Frantzen, I., van de Weijer, B., van Strijp, D. and van Gemen, B., 2001. Quantitative detection of hepatitis B virus DNA by real-time nucleic acid sequence-based amplification with molecular beacon detection. Journal of clinical microbiology, 39(10), pp.3656-3665.
Yost, S.A., Wang, Y. and Marcotrigiano, J., 2018. Hepatitis C virus envelope glycoproteins: A balancing act of order and disorder.Frontiers in immunology, 9, p.1917.
. Ranjbar, M.M., Ghorban, K., Alavian, S.M., Keyvani, H., Dadmanesh, M.,Ardakany, A.R., et al., 2013. GB virus C/hepatitis G virus envelope glycoprotein E2: computational molecular features and immunoinformatics study. Hepatitis monthly, 13(12).
White, P.A., Netzler, N.E. and Hansman, G.S., 2016.Foodborne viral pathogens. CRC Press.
Murray, P.R., Rosenthal, K.S. and Pfaller, M.A., 2020. Medical microbiology E-book. Elsevier Health Sciences.p:809(550-555).
Netter, H.J., Barrios, M.H., Littlejohn, M. and Yuen, L.K., 2021. Hepatitis Delta Virus (HDV) and delta-like agents: Insights into their origin. Frontiers in Microbiology, 12, p.1448.
Hoofnagle, J.H., Nelson, K.E. and Purcell, R.H., 2012. Hepatitis e. New England Journal of Medicine, 367(13), pp.1237-1244.
Carroll, K.C., Butel, J. and Morse, S., 2015. Jawetz melnick and adelbergs medical microbiology 27 E. McGraw-Hill Education.p:502-508
Meo, S.A., Assad, A.A., Sanie, F.M., Baksh, N.D., Al-Qahtani, A. and Shaikh, Z.A., 2010. Transmission of hepatitis-B virus through salivary blood group antigens in saliva. J Coll Physicians Surg Pak, 20(7), pp.444-448.
Urban, S., Neumann-Haefelin, C. and Lampertico, P., 2021. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to- treat disease. Gut, 70(9), pp.1782-1794.Rizzetto M, Alavian SM. 2013. Hepatitis delta: The rediscovery. Clin Liver Dis , 17: 475–487.
Rizzetto M, Alavian SM. 2013. Hepatitis delta: The rediscovery. Clin Liver Dis 17: 475–487
Moosavy, S.H., Davoodian, P., Nazarnezhad, M.A., Nejatizaheh, A., Eftekhar, E. and Mahboobi, H., 2017. Epidemiology, transmission, diagnosis, and outcome of Hepatitis C virus infection. Electronic physician, 9(10), p.5646
Cao, J., Zhang, J., Lu, Y., Luo, S., Zhang, J. and Zhu, P., 2019. Cryo-EM structure of native spherical subviral particles isolated from HBV carriers. Virus research, 259, pp.90-96.
Tan, W.S. and Ho, K.L., 2014. Phage display creates innovative applications to combat hepatitis B virus. World journal of gastroenterology: WJG, 20(33), p.11650.
Coppola, N., De Pascalis, S., Onorato, L., Calò, F., Sagnelli, C. and Sagnelli, E., 2016. Hepatitis B virus and hepatitis C virus infection in healthcare workers. World journal of hepatology, 8(5), p.273.
Ali, B.A., Salem, H.H., Wang, X.M., Huang, T.H., Xie, Q.D. and Zhang, X.Y.,2009.Detection of hepatitis B polymerase gene in early embryonic cells from golden hamster oocyte and human spermatozoa carrying HBV DNA.Inter J Virol, 5(4), pp.164-169.
Kosinska, A.D., Bauer, T. and Protzer, U., 2017. Therapeutic vaccination for chronic hepatitis B. Current opinion in virology, 23, pp.75-81.
Hu, J. and Liu, K., 2017. Complete and incomplete hepatitis B virus particles: formation, function, and application. Viruses, 9(3), p.56.
Gastaminza, P., Dryden, K.A., Boyd, B., Wood, M.R., Law, M., Yeager, et al., 2010. Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. Journal of virology, 84(21), pp.10999-11009.
Vercauteren, K., Mesalam, A.A., Leroux-Roels, G. and Meuleman, P., 2014. Impact of lipids and lipoproteins on hepatitis C virus infection and virus neutralization. World Journal of Gastroenterology: WJG, 20(43), p.15975.
Morozov, V.A. and Lagaye, S., 2018. Hepatitis C virus: Morphogenesis, infection and therapy. World journal of hepatology, 10(2), p.186.
Blaising, J. and Pécheur, E.I., 2013. Lipids‒A key for hepatitis C virus entry and a potential target for antiviral strategies. Biochimie, 95(1), pp.96-102.
Grassi, G., Di Caprio, G., Fimia, G.M., Ippolito, G., Tripodi, M. and Alonzi, T., 2016. Hepatitis C virus relies on lipoproteins for its life cycle. World journal of gastroenterology, 22(6), p.1953.
Chisari, F.V., Isogawa, M. and Wieland, S.F., 2010. Pathogenesis of hepatitis B virus infection. Pathologie Biologie, 58(4), pp.258-266.
Ma, Z., Cao, Q., Xiong, Y., Zhang, E. and Lu, M., 2018. Interaction between hepatitis B virus and toll-like receptors: current status and potential therapeutic use for chronic hepatitis B. Vaccines, 6(1), p.6.
Herrscher, C., Roingeard, P. and Blanchard, E., 2020. Hepatitis B virus entry into cells. Cells, 9(6), p.1486.
Hösel, M., Quasdorff, M., Wiegmann, K., Webb, D., Zedler, U., Broxtermann, M., et al., 2009. Not interferon, but interleukin‐6 controls early gene expression in hepatitis B virus infection. Hepatology, 50(6), pp.1773-1782.
Thomson, A.W. and Knolle, P.A., 2010. Antigen-presenting cell function in the tolerogenic liver environment. Nature Reviews Immunology, 10(11), pp.753- 766.
Gerlich, W.H., 2013. Medical virology of hepatitis B: how it began and where we are now. Virology journal, 10(1), pp.1-25.
Simmons, R.A., Willberg, C.B. and Paul, K., 2013. Immune evasion by viruses. eLS.
Kgatle, M.M. and Setshedi, M., 2016. Immunopathogenesis of hepatitis B virus infection and related complications. EMJ Hepatol, 4, pp.84-92.
Bengsch, B., Martin, B. and Thimme, R., 2014. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. Journal of hepatology, 61(6), pp.1212-1219.
Fisicaro, P., Barili, V., Rossi, M., Montali, I., Vecchi, A., Acerbi, G., et al., 2020. Pathogenetic mechanisms of T cell dysfunction in chronic HBV infection and related therapeutic approaches. Frontiers in Immunology, 11, p.849.
Wang, D., Sun, Z., Zhu, X., Zheng, X., Zhou, Y., Lu, Y., Yan, P., Wang, H., Liu, H., Jin, J. and Zhu, H., 2022. GARP-mediated active TGF-β1 induces bone marrow NK cell dysfunction in AML patients with early relapse post–allo- HSCT. Blood, The Journal of the American Society of Hematology, 140(26), pp.2788-2804.
Dai, X.K., Ding, Z.X., Tan, Y.Y., Bao, H.R., Wang, D.Y. and Zhang, H., 2022. Neutrophils inhibit CD8+ T cells immune response by arginase-1 signaling in patients with sepsis. World Journal of Emergency Medicine, p.0.
Tacke, F., 2017. Targeting hepatic macrophages to treat liver diseases. Journal of hepatology, 66(6), pp.1300-1312
De Simone, G., Andreata, F., Bleriot, C., Fumagalli, V., Laura, C., Garcia- Manteiga,et al. ,2021. Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming.Immunity,54(9), pp.2089-2100.
Li, C., Ji, H., Cai, Y., Ayana, D.A., Lv, P., Liu, M. and Jiang, Y., 2013. Serum interleukin-37 concentrations and HBeAg seroconversion in chronic HBV patients during telbivudine treatment. Journal of Interferon & Cytokine Research, 33(10), pp.612-618.
Vercauteren, K., Mesalam, A.A., Leroux-Roels, G. and Meuleman, P., 2014. Impact of lipids and lipoproteins on hepatitis C virus infection and virus neutralization. World Journal of Gastroenterology: WJG, 20(43), p.15975.
Morozov, V.A. and Lagaye, S., 2018. Hepatitis C virus: Morphogenesis, infection and therapy. World journal of hepatology, 10(2), p.186.
Dustin, L.B., Bartolini, B., Capobianchi, M.R. and Pistello, M., 2016. Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clinical microbiology and infection, 22(10), pp.826-832.
Streicher, F. and Jouvenet, N., 2019. Stimulation of innate immunity by host and viral RNAs. Trends in Immunology, 40(12), pp.1134-1148.
Ashfaq, U.A., Javed, T., Rehman, S., Nawaz, Z. and Riazuddin, S., 2011. An overview of HCV molecular biology, replication and immune responses. Virology journal, 8(1), pp.1-10.
Abdelwahab, S.F., 2016. Cellular immune response to hepatitis-C-virus in subjects without viremia or seroconversion: is it important?. Infectious agents and cancer, 11(1), pp.1-12.
Shin, E. C., Sung, P. S., & Park, S. H., 2016. Immune responses and immunopathology in acute and chronic viral hepatitis. Nature Reviews Immunology, 16(8), 509.
Zeisel, M.B., Lupberger, J., Fofana, I. and Baumert, T.F., 2013. Host- targeting agents for prevention and treatment of chronic hepatitis C–perspectives and challenges. Journal of hepatology, 58(2), pp.375-384.
He, Q., He, Q., Qin, X., Li, S., Li, T., Xie, L., et al., 2016. The relationship between inflammatory marker levels and hepatitis C virus severity. Gastroenterology Research and Practice, 2016.
Lucas, M., Deshpande, P., James, I., Rauch, A., Pfafferott, K., Gaylard, E., et al., 2018. Evidence of CD4+ T cell-mediated immune pressure on the Hepatitis C virus genome. Scientific reports, 8(1), pp.1-10.
Ding, Q., Cao, X., Lu, J., Huang, B., Liu, Y.J., Kato, N., et al., 2013. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. Journal of hepatology, 59(1), pp.52-58.
Gokhale NS, Vazquez C, Horner SM., 2014. Hepatitis C Virus. Strategies to Evade Antiviral Responses. Future Virol.;9(12)
Kim, S.J., Syed, G.H., Khan, M., Chiu, W.W., Sohail, M.A., Gish, R.G., et al., 2014. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proceedings of the National Academy of Sciences, 111(17), pp.6413-6418.
Kared, H., Fabre, T., Bedard, N., Bruneau, J. and Shoukry, N.H., 2013. Galectin-9 and IL-21 mediate cross-regulation between Th17 and Treg cells during acute hepatitis C. PLoS pathogens, 9(6), p.e1003422.
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets. 2017;18(7):826-843. doi: 10.2174/1389450116666150825110532
Martinez MA, Franco S. Therapy Implications of Hepatitis C Virus Genetic Diversity. Viruses. 2020 Dec 29;13(1):41. doi: 10.3390/v13010041
Iwasaki A. A virological view of innate immune recognition. Annu Rev Microbiol. 2012;66:177–196
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells. 2019 Apr 25;8(4):376. doi: 10.3390/cells8040376
Larrubia JR, Moreno-Cubero E, Lokhande MU, García-Garzón S, Lázaro A, Miquel J, Perna C, Sanz-de-Villalobos E. Adaptive immune response during hepatitis C virus infection. World J Gastroenterol. 2014 Apr 7;20(13
Copyright (c) 2024 Saja Qasim Hammood, Ellaf Abdulljabbar Jassim prf. Dr. Alia Essam Mahmood, Ashwaq A. Kadhem

This work is licensed under a Creative Commons Attribution 4.0 International License.














