A REVIEW OF THE DEVELOPMENT OF AN UNDERSTANDING OF ANTIBIOTIC INTERACTIONS, FROM MECHANISMS OF ACTION TO NOVEL RESISTANCE AND THE SEARCH FOR NATURAL ALTERNATIVES
Downloads
Recent research has also highlighted the importance of interspecies signalling in terms of ecology, immunology, and evolution. Despite being frequently linked to the direct inhibition of microbial growth, signalling molecules can transmit data about complex, coordinated regulatory phenomena such as virulence island expression, periodic biosynthetic activity, stress responses, cell density, motility, and biofilm formation. Genetically encoded quorum sensing signals, at low concentrations, increase the spread of horizontally acquired antibiotic resistance genes, modify host immune response profiles, and control the expression of virulence determinants. Antibiotics suppress infectious diseases, facilitate health interventions such as surgery, and improve the treatment outcomes of human and animal diseases (e.g., by minimising morbidity, mortality, and hospital length of stay). However, the emergence of drug-resistant biofilms continues to undermine many therapeutic modalities. These intricate settings that provide antibiotics include the presence of individually resistant cells, non-linear nutrient transport and blockage effects, and limited yet subpopulation-biased genetic plasticity. For the longest time, the mainstay of contemporary medicine has been the use of antibiotics to treat bacterial infections 5. However, the creation and spread of antibiotic resistance, a serious worldwide health concern brought on by the abuse and misuse of antibiotics, constantly jeopardises their function. 2. The decrease in the number of novel, efficacious antibiotics being introduced to the market exacerbates these problems. Optimising the usage of already available antibiotics by learning more about how they behave in the intricate microbial and host ecosystems connected to bacterial illnesses is one way to address this. This involves, but is not limited to, looking into how combinations of antibiotics affect treatment outcomes and how these interactions alter in certain settings to either help or hinder the evolution of antibiotic resistance.
Silén H, Y. A. Salih E, Ego Mgbeahuruike E, Fyhrqvist P. Ethnopharmacology, Antimicrobial Potency, and Phytochemistry of African Combretum and Pteleopsis Species (Combretaceae): A Review. 2023. ncbi.nlm.nih.gov
P. Bernier S, G. Surette M. Concentration-dependent activity of antibiotics in natural environments. 2013. ncbi.nlm.nih.gov
Murugaiyan J, Anand Kumar P, Srinivasa Rao G, Iskandar K et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. 2022. ncbi.nlm.nih.gov
M. Mira P, Crona K, Greene D, C. Meza J et al. Rational Design of Antibiotic Treatment Plans. 2014. [PDF]
Li J, Xie S, Ahmed S, Wang F et al. Antimicrobial Activity and Resistance: Influencing Factors. 2017. ncbi.nlm.nih.gov
Cantas L, Q. A. Shah S, M. Cavaco L, M. Manaia C et al. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. 2013. ncbi.nlm.nih.gov
El-Ansary A, Balto H, M. Al-Hadlaq S, H. Auda S et al. Control of antibiotic resistance and superinfections as a strategy to manage COVID-19 deaths. 2022. ncbi.nlm.nih.gov
Yilancioglu K. Antimicrobial Drug Interactions: Systematic Evaluation of Protein and Nucleic Acid Synthesis Inhibitors. 2019. ncbi.nlm.nih.gov
Petrungaro G, Mulla Y, Bollenbach T. Antibiotic resistance: Insights from evolution experiments and mathematical modeling. 2021. [PDF]
Hasara Nethmini De Zoysa M, Rathnayake H, Punyakanthi Hewawasam R, Mudiyanselage Dilip Gaya Bandara Wijayaratne W. Determination of In Vitro Antimicrobial Activity of Five Sri Lankan Medicinal Plants against Selected Human Pathogenic Bacteria. 2019. ncbi.nlm.nih.gov
Kopel J, McDonald J, Hamood A. An Assessment of the In Vitro Models and Clinical Trials Related to the Antimicrobial Activities of Phytochemicals. 2022. ncbi.nlm.nih.gov
Manga Joseph Arsene M. Synergy Test for Antibacterial Activity: Towards the Research for a Consensus between the Fractional Inhibitory Concentration (Checkboard Method) and the Increase in Fold Area (Disc Diffusion Method). 2021. [PDF]
Rozemberczki B, Bonner S, Nikolov A, Ughetto M et al. A Unified View of Relational Deep Learning for Drug Pair Scoring. 2021. [PDF]
Böttcher L, Gersbach H. Incentivizing Narrow-Spectrum Antibiotic Development with Refunding. 2020. [PDF]
Placha I, Bacova K, Plachy L. Current Knowledge on the Bioavailability of Thymol as a Feed Additive in Humans and Animals with a Focus on Rabbit Metabolic Processes. 2022. ncbi.nlm.nih.gov
Łojewska E, Sakowicz T. An Alternative to Antibiotics: Selected Methods to Combat Zoonotic Foodborne Bacterial Infections. 2021. ncbi.nlm.nih.gov
Xu C, Kong L, Gao H, Cheng X et al. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. 2022. ncbi.nlm.nih.gov
A. Kukushkina E, Imdadul Hossain S, Chiara Sportelli M, Ditaranto N et al. Ag-Based Synergistic Antimicrobial Composites. A Critical Review. 2021. ncbi.nlm.nih.gov
Yonuis Abdulhadi S, Nawaf Gergees R, Qasim Hasan G. Molecular Identifification, Antioxidant Effifficacy of Phenolic Compounds, and Antimicrobial Activity of Beta-Carotene Isolated from Fruiting Bodies of Suillus sp. 2023. [PDF]
Żelechowska P, Agier J, Brzezińska-Błaszczyk E. Endogenous antimicrobial factors in the treatment of infectious diseases. 2016. ncbi.nlm.nih.gov
Nausch B, B. Bittner C, Höller M, Abramov-Sommariva D et al. Contribution of Symptomatic, Herbal Treatment Options to Antibiotic Stewardship and Microbiotic Health. 2022. ncbi.nlm.nih.gov
Florin Pancu D, Scurtu A, Gabriela Macasoi I, Marti D et al. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity—A Pharmaco-Toxicological Screening. 2021. ncbi.nlm.nih.gov
Raza S, Matuła K, Karoń S, Paczesny J. Resistance and Adaptation of Bacteria to Non-Antibiotic Antibacterial Agents: Physical Stressors, Nanoparticles, and Bacteriophages. 2021. ncbi.nlm.nih.gov
Shim H. Three innovations of next-generation antibiotics: evolvability, specificity, and non-immunogenicity. 2022. [PDF]
El-Ansary A, Balto H, M. Al-Hadlaq S, H. Auda S et al. Control of antibiotic resistance and superinfections as a strategy to manage COVID-19 deaths. 2022. ncbi.nlm.nih.gov
Petrungaro G, Mulla Y, Bollenbach T. Antibiotic resistance: Insights from evolution experiments and mathematical modeling. 2021. [PDF]
Tang J, Ouyang Q, Li Y, Zhang P et al. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. 2022. ncbi.nlm.nih.gov
Wysocka M, Wysocki O, Delmas M, Mutel V et al. Large Language Models, scientific knowledge and factuality: A systematic analysis in antibiotic discovery. 2023. [PDF]
Khameneh B, Iranshahy M, Soheili V, Sedigheh Fazly Bazzaz B. Review on plant antimicrobials: a mechanistic viewpoint. 2019. ncbi.nlm.nih.gov
Pereira Dias Silva D, Silva Cardoso M, José Macedo A. Endophytic Fungi as a Source of Antibacterial Compounds—A Focus on Gram-Negative Bacteria. 2022. ncbi.nlm.nih.gov
Pucelik B, M. Dąbrowski J. Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. 2022. ncbi.nlm.nih.gov
Witzky A, Tollerson R, Ibba M. Translational control of antibiotic resistance. 2019. ncbi.nlm.nih.gov
Greulich P, Dolezal J, Scott M, R. Evans M et al. Predicting the dynamics of bacterial growth inhibition by ribosome-targeting antibiotics. 2017. [PDF]
J. M. Wollman A, H. Syeda A, McGlynn P, C. Leake M. Single-molecule observation of DNA replication repair pathways in E. coli. 2016. [PDF]
Balderrama-González AS, Piñón-Castillo HA, Ramírez-Valdespino CA, Landeros-Martínez LL et al. Antimicrobial Resistance and Inorganic Nanoparticles. 2021. ncbi.nlm.nih.gov
Alam K, Mazumder A, Sikdar S, Zhao YM et al. Streptomyces: The biofactory of secondary metabolites. 2022. ncbi.nlm.nih.gov
I. Aminov R. A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future. 2010. ncbi.nlm.nih.gov
Böttcher L, Gersbach H. Incentivizing Narrow-Spectrum Antibiotic Development with Refunding. 2020. [PDF]
Kopel J, McDonald J, Hamood A. An Assessment of the In Vitro Models and Clinical Trials Related to the Antimicrobial Activities of Phytochemicals. 2022. ncbi.nlm.nih.gov
P. Goulart C, Mahmudi M, A. Crona K, D. Jacobs S et al. Designing antibiotic cycling strategies by determining and understanding local adaptive landscapes. 2013. [PDF]
M. Mira P, Crona K, Greene D, C. Meza J et al. Rational Design of Antibiotic Treatment Plans. 2014. [PDF]
Djidjou-Demasse R, Alizon S, T. Sofonea M. Within-host bacterial growth dynamics with both mutation and horizontal gene transfer. 2020. [PDF]
Espinosa Franco B, Altagracia Martínez M, A Sánchez Rodríguez M, I Wertheimer A. The determinants of the antibiotic resistance process. 2009. ncbi.nlm.nih.gov
Khare T, Anand U, Dey A, G. Assaraf Y et al. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. 2021. ncbi.nlm.nih.gov
Ndagi U, A. Falaki A, Abdullahi M, M. Lawal M et al. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. 2020. ncbi.nlm.nih.gov
Kunhikannan S, J. Thomas C, E. Franks A, Mahadevaiah S et al. Environmental hotspots for antibiotic resistance genes. 2021. ncbi.nlm.nih.gov
Kumar S, F. Varela M. Biochemistry of Bacterial Multidrug Efflux Pumps. 2012. ncbi.nlm.nih.gov
G. C. Matias E, S. Bezerra K, H. Lima Costa A, S. Clemente W et al. Quantum Biochemical Analysis of the TtgR Regulator and Effectors. 2022. [PDF]
J. Cheesman M, Ilanko A, Blonk B, E. Cock I. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution?. 2017. ncbi.nlm.nih.gov
Yagmur Koca B, B. Akan O. Bacterial Communications and Computing in Internet of Everything (IoE). 2024. [PDF]
T. Odularu A, J. Afolayan A, P. Sadimenko A, A. Ajibade P et al. Multidrug-Resistant Biofilm, Quorum Sensing, Quorum Quenching, and Antibacterial Activities of Indole Derivatives as Potential Eradication Approaches. 2022. ncbi.nlm.nih.gov
Chang C, Yu X, Guo W, Guo C et al. Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. 2022. ncbi.nlm.nih.gov
Pan J, Adem Bahar A, Syed H, Ren D. Reverting Antibiotic Tolerance of Pseudomonas aeruginosa PAO1 Persister Cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. 2012. ncbi.nlm.nih.gov
Fu Y, Zhu M, Xing J. Resonant activation: a strategy against bacterial persistence. 2009. [PDF]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. 2017. ncbi.nlm.nih.gov
Liu Y, Yang K, Zhang H, Jia Y et al. Combating Antibiotic Tolerance Through Activating Bacterial Metabolism. 2020. ncbi.nlm.nih.gov
Liu X, Li D, Ma M, K. Szymanski B et al. Network resilience. 2020. [PDF]
Ternent L, J. Dyson R, Krachler AM, Jabbari S. Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment. 2014. [PDF]
Makumi A, Lucky Mhone A, Odaba J, Guantai L et al. Phages for Africa: The Potential Benefit and Challenges of Phage Therapy for the Livestock Sector in Sub-Saharan Africa. 2021. ncbi.nlm.nih.gov
O. Fimbres-García J, Flores-Sauceda M, Daniela Othon-Díaz E, García-Galaz A et al. Facing Resistant Bacteria with Plant Essential Oils: Reviewing the Oregano Case. 2022. ncbi.nlm.nih.gov
Silén H, Y. A. Salih E, Ego Mgbeahuruike E, Fyhrqvist P. Ethnopharmacology, Antimicrobial Potency, and Phytochemistry of African Combretum and Pteleopsis Species (Combretaceae): A Review. 2023. ncbi.nlm.nih.gov
D. Manniello M, Moretta A, Salvia R, Scieuzo C et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. 2021. ncbi.nlm.nih.gov
Elbehiry A, Marzouk E, Abalkhail A, El-Garawany Y et al. The Development of Technology to Prevent, Diagnose, and Manage Antimicrobial Resistance in Healthcare-Associated Infections. 2022. ncbi.nlm.nih.gov
Alexsandra González-Villarreal J, Jamileth González-Lozano K, Teresa Aréchiga-Carvajal E, Antonio Morlett-Chávez J et al. Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). 2022. ncbi.nlm.nih.gov
Aslam B, Imran Arshad M, Aamir Aslam M, Muzammil S et al. Bacteriophage Proteome: Insights and Potentials of an Alternate to Antibiotics. 2021. ncbi.nlm.nih.gov
Liu Y, Tong Z, Shi J, Li R et al. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. 2021. ncbi.nlm.nih.gov
E. Motter A. Improved Network Performance via Antagonism: From Synthetic Rescues to Multi-drug Combinations. 2010. [PDF]
Iqbal Choudhary M, Römling U, Nadeem F, Muhammad Bilal H et al. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. 2022. ncbi.nlm.nih.gov
Marie Vianney Habarugira J, Härmark L, Figueras A. Pharmacovigilance Data as a Trigger to Identify Antimicrobial Resistance and Inappropriate Use of Antibiotics: A Study Using Reports from The Netherlands Pharmacovigilance Centre. 2021. ncbi.nlm.nih.gov
López Romo A, Quirós R. Appropriate use of antibiotics: an unmet need. 2019. ncbi.nlm.nih.gov
Jamrozik E, S Heriot G. Ethics and antibiotic resistance. 2022. ncbi.nlm.nih.gov
Ye J, Chen X. Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. 2022. ncbi.nlm.nih.gov
Iskandar K, Murugaiyan J, Hammoudi Halat D, El Hage S et al. Antibiotic Discovery and Resistance: The Chase and the Race. 2022. ncbi.nlm.nih.gov
Vogt Sionov R, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. 2022. ncbi.nlm.nih.gov
Zhai X, Wu G, Tao X, Yang S et al. Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. 2023. ncbi.nlm.nih.gov
Yow HY, Govindaraju K, Huili Lim A, Abdul Rahim N. Optimizing Antimicrobial Therapy by Integrating Multi-Omics With Pharmacokinetic/Pharmacodynamic Models and Precision Dosing. 2022. ncbi.nlm.nih.gov
Wohlleben W, Mast Y, Stegmann E, Ziemert N. Antibiotic drug discovery. 2016. ncbi.nlm.nih.gov
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. 2018. ncbi.nlm.nih.gov
Copyright (c) 2024 Mustafa Kareem AL-Azzawi, Nabaa Abbas Hasan, Mohammed M. Barrak

This work is licensed under a Creative Commons Attribution 4.0 International License.














