ANTIBIOFILM SILVER NANOPARTICLES PRODUC BY ESCHERICHIA COLI
Downloads
- coli bacteria were obtained from the soil near the Euphrates River in the northern region of Basra City and cultured on nutrient agar media. The bacterial isolate was subjected to purification and thereafter seen under a microscope. The study revealed that E. coli bacteria has the capacity to synthesize silver nanoparticles when combined with a 1 mM AgNO3 solution. The synthesis of AgNPs was deduced by examining the change in color of the reaction mixture. The UV-vis spectroscopy results indicated that the silver nanoparticles exhibited absorbance at a specific wavelength of 428 nm. Additionally, the FT-IR analysis revealed the presence of active groups in the silver particles, which played a role in maintaining their stability. The SEM and TEM studies revealed that the AgNPs exhibited a spherical morphology, with diameters ranging from 47.66 to 11.68 nm. A cubic crystal structure of silver was confirmed using an X-ray diffraction examination, while an EDX test indicated that the final product was silver (Ag). The antimicrobial efficacy of silver nanoparticles (AgNPs) against bacteria isolated from diseased patients was evaluated using the Well diffusion agar technique. It was shown that nano-silver effectively inhibited the development of the bacteria.The study utilized 96 well Microtiter plates to assess the inhibitory effect of AgNPs on biofilm development in harmful bacteria.
. Ahmed, T., Shahid, M., Noman, M., Niazi, M. B. K., Mahmood, F., Manzoor, I., ... & Chen, J. (2020). Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens, 9(3), 160.
. El-Shanshoury, A. E. R. R., ElSilk, S. E., & Ebeid, M. E. (2011). Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Ba-cillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. International Scholarly Research Notices, 2011.
. - Syafiuddin, A. (2017). Salmiati; Salim, MR; Beng Hong Kueh, A.; Hadibarata, T.; Nur, H. A review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges. J. Chin. Chem. Soc, 64(7), 732-756.
. Villeret, B., Dieu, A., Straube, M., Solhonne, B., Miklavc, P., Hamadi, S., ... & Garcia-Verdugo, I. (2018). Silver nanoparticles impair retinoic acid-inducible gene I-mediated mitochondrial antiviral immunity by blocking the autophagic flux in lung epithelial cells. ACS nano, 12(2), 1188-1202.
. Schillaci, D., Cusimano, M. G., Cascioferro, S. M., Di Stefano, V., Arizza, V., Chiaramonte, M., ... & Venturella, G. (2017). Antibacterial activity of desert truffles from Saudi Arabia against Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Medicinal Mushrooms, 19(2).
. Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Reviews in Microbiology, 56(1), 187-209.
-
. Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., ... & Cars, O. (2013). Antibiotic resistance—the need for global solutions. The Lancet infectious diseases, 13(12), 1057-1098.
. Johnson, L. F., Curl, E. A., Bond, J. H., & Fribourg, H. A. (1960). Methods for studying soil microflora-plant disease relationships.
. Hashim, A. I. (2020). Cytotoxic effects of silver nanoparticles prepared from Escherichia coli culture filtrates on vero cell line (Doctoral dissertation, M. Sc. Thesis. Mustansiriyah University).
. 10 - Nagati, V. B., Alwala, J., Koyyati, R., Donda, M. R., Banala, R., & Padigya, P. R. M. (2012). Green synthesis of plant-mediated silver nanoparticles using Withania somnifera leaf extract and evaluation of their antimicrobial activity. Asian Pac J Trop Biomed, 2, 1-5.
. Sathishkumar, M., Sneha, K., Won, S. W., Cho, C. W., Kim, S., & Yun, Y. S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces, 73(2), 332-338.
. Al-Saady, O. M. F., & Zaki, N. H. (2022). THE EFFECT OF BIOSYNTHESIZED AG-NANOPARTICLES ON KLEBSIELLA PNEUMONIAE BIOFILM AND SOME VIRULENCE GENES. CHINESE JOURNAL OF MEDICAL GENETICS, 32(4), 2022.
. Sohrabnezhad, S. H., Moghaddam, M. M., & Salavatiyan, T. (2014). Synthesis and characterization of CuO–montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 125, 73-78.
. Hussain, Z. (2016). Inhibition of Biofilm using biological synthesis of silver nanoparticles from supernatants of E. coli (Doctoral dissertation, M. Sc. Thesis. Mustansiriyah University).
. Hashim, A. I. (2020). Cytotoxic effects of silver nanoparticles prepared from Escherichia coli culture filtrates on vero cell line (Doctoral dissertation, M. Sc. Thesis. Mustansiriyah University).
. Ramalingam, V: Rajaraml 1, R.: Premkumar, C.; Santhanam, -P.; Vinothkumar, s
and Kaleshkumar, k. (2013). Dhi Biosnthesis of silver nanoparticles from deep sea
bacteria Pseudomonas aeruginosa.
. Neethu, S., Midhun, S. J., Sunil, M. A., Soumya, S., Radhakrishnan, E. K., & Jyothis, M. (2018). Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium. Journal of Photochemistry and Photobiology B: Biology, 180, 175-185.
. bakht Dalir, S. J., Djahaniani, H., Nabati, F., & Hekmati, M. (2020). Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon, 6(3).
. Ahmad, A., Wei, Y., Syed, F., Tahir, K., Rehman, A. U., Khan, A., ... & Yuan, Q. (2017). The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial pathogenesis, 102, 133-142.
. Patil, S. V., Borase, H. P., Patil, C. D., & Salunke, B. K. (2012). Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Applied biochemistry and biotechnology, 167, 776-790.
. Ali, O. A. U. (2012). Prevention of Proteus mirabilis biofilm by surfactant solution. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 4(1), 1-8.
. Namasivayam, S. K. R., Preethi, M., Bharani, A., Robin, G., & Latha, B. (2012). Biofilm inhibitory effect of silver nanoparticles coated catheter against Staphylococcus aureus and evaluation of its synergistic effects with antibiotics. Int J Biol Pharm Res, 3(2), 259-265.
. Wanger, A., Chavez, V., Huang, R., Wahed, A., Dasgupta, A., & Actor, J. K. (2017). Microbiology and molecular diagnosis in pathology: a comprehensive review for board preparation, certification and clinical practice.
. MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria, williams and wilkins. Philadelphia, PA, 113(7).
. Benson, H. J. (2002). Microbiological applications: a laboratory manual in general microbiology. [McGraw-Hill].
. Zaki, N. H., & Husain, Z. (2016). Enhanced antibacterial and anti-biofilm activities of biosynthesized silver nanoparticles against pathogenic bacteria. J Genetic Environ Res Conservation, 4(2), 197-203.
. Saravanan, M., Barik, S. K., MubarakAli, D., Prakash, P., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial pathogenesis, 116, 221-226.
. Kathiresan, K., Alikunhi, N. M., Pathmanaban, S., Nabikhan, A., & Kandasamy, S. (2010). Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Canadian Journal of Microbiology, 56(12), 1050-1059.
. Majeed, S., Aripin, F. H. B., Shoeb, N. S. B., Danish, M., Ibrahim, M. M., & Hashim, R. (2019). Bioengineered silver nanoparticles capped with bovine serum albumin and its anticancer and apoptotic activity against breast, bone and intestinal colon cancer cell lines. Materials Science and Engineering: C, 102, 254-263.
. Kathiresan, K., Alikunhi, N. M., Pathmanaban, S., Nabikhan, A., & Kandasamy, S. (2010). Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Canadian Journal of Microbiology, 56(12), 1050-1059.
. Mbagwu, F. O., Auta, S. H., Bankole, M. T., Kovo, A. S., & Abioye, O. P. (2023). Biosynthesis and characterization of silver nanoparticles using Bacillus subtilis, Escherichia coli, and leaf extracts of Jatropha and Ocimum species. International Nano Letters, 13(1), 63-73.
. Huq, M. A. (2020). Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. International journal of molecular sciences, 21(4), 1510.
. Shareef, H. A., Jafar, N. B., & Abdulrahman, R. B. (2019). The Biosynthesis of Silver Nanoparticles by Moringa Oleifera and its Antibacterial Activity. Indian Journal of Public Health Research & Development, 10(8).
. Neihaya, H. Z., & Zaman, H. H. (2018). Investigating the effect of biosynthesized silver nanoparticles as antibiofilm on bacterial clinical isolates. Microbial pathogenesis, 116, 200-208.
. Qader, Q. A., Noumi, B. S., & Saleh, R. F. (2021). Antibacterial effect of biosynthesis silver nanoparticles on Pseudomonas aeruginosa. Tikrit Journal of Pure Science, 26(5), 22-26.
. Hamida, R. S., Ali, M. A., Goda, D. A., Khalil, M. I., & Al-Zaban, M. I. (2020). Novel biogenic silver nanoparticle-induced reactive oxygen species inhibit the biofilm formation and virulence activities of methicillin-resistant Staphylococcus aureus (MRSA) strain. Frontiers in bioengineering and biotechnology, 8, 433.
. 37- Kunwar, A., Shrestha, P., Shrestha, S., Thapa, S., Shrestha, S., & Amatya, N. M. (2021). Detection of biofilm formation among Pseudomonas aeruginosa isolated from burn patients. Burns Open, 5(3), 125-129.
. 38 - Siddique, M. H., Aslam, B., Imran, M., Ashraf, A., Nadeem, H., Hayat, S., ... & Muzammil, S. (2020). Effect of silver nanoparticles on biofilm formation and EPS production of multidrug‐resistant Klebsiella pneumoniae. Biomed research international, 2020(1), 6398165.
Copyright (c) 2024 Mohammed aqeel abdulrazz, Ismaal Jmia Abas

This work is licensed under a Creative Commons Attribution 4.0 International License.














