Main Article Content
Abstract
The notoriety of Multiple Drug Resistant (MDR) K. pneumoniae extends beyond nosocomial or community acquired infections, since it is a major cause of biofilm-related infections. The utilization of a very specific or distinct media, Congo Red Agar (CRA), for detection of biofilm, has significant drawbacks, including inconsistencies in the creation of black pigment. In this study, an assessment of Modified Congo Red Agar (MCRA), for detection of biofilm, was performed on 23 multidrug-resistant (MDR) K. pneumoniae strains obtained from various clinical samples. The aim of this study was to assess the effectiveness and dependability of Modified Congo Red Agar (MCRA) as an alternative medium for studying biofilm production to the non modified Congo Red Agar. Also to examine the prevalence of the fimH gene, which is necessary for biofilm formation among these isolates. Lastly to determine the relationship between antibiotic resistance, the presence of the fimH gene, and the ability to produce biofilm among K. pneumonaie strains. These strains were diagnosed according to their specific bacteriological characteristics. After assessing antibiotic susceptibility, all MDR K. pneumoniae isolates exhibited the presence of the fimH gene using the PCR method. On CRA 20 isolates were strong biofilm producer as they appeared as black colored colonies, two were moderate biofilm producer (pink colored) and only 1 was non biofilm producer ( red colored) colony. On MCR the same results for biofilm production to CRA, except for one colony differed as it appeared red (non biofilm producer) on MCRA and pink (moderate biofilm producer) on CRA. However, the growth of 75% blackness pigment of MDR K. pneumoniae strains on the CRA decreased over time. The phenotypic pigmentation on CRA was enhanced by modifying the contents of the agar that led to the persistent development of a highly concentrated black pigment in isolates containing the fimH gene for 2 to 4 days, with no drop in pigmentation seen over time. The change of the agar ingredient enabled the stable synthesis of black pigment and also resulted in a reduction in the cost of agar preparation.
Key Words: Biofilm, Congo Red Agar, fimH gene, Modified Congo Red Agar, MDR K. pneumonaie.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- . Lam M. Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15. Journal of Antimicrobial Chemotherapy. 2019;74(5):1218–1222. doi:10.1093/jac/dkz028 at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477991.
- . Awoke T, Teka B, Seman A, et al. High prevalence of multidrug- resistant Klebsiella pneumoniae in a tertiary care hospital in Ethiopia. Antibiotics. 2021;10(8):1007. doi:10.3390/antibiotics10081007 at https://pubmed.ncbi.nlm.nih.gov/34439057/
- . Aljanaby A, Alhasnawi H. Phenotypic and molecular characterization of multidrug resistant Klebsiella pneumoniae isolated from different clinical sources in Al-Najaf province-Iraq. Pakistan Journal of Biology Science. 2017;20(5):217-232. doi:10.3923/pjbs.2017.217.232 at https://pubmed.ncbi.nlm.nih.gov/29023034/
- . Fouad P. Incidence and antibiotic sensitivity of Klebsiella pneumonie isolated from urinary tract infection patients in Zakho emergency hospital/Iraq. Journal of Education and Science. 2020;29.3:257-268. DOI: 10.33899/edusj.2020.126827.1056.
- . Sahoo R, Das A, Gaur M, et al. Genotypic validation of extended- spectrum β-lactamase and virulence factors in multidrug resistance Klebsiella pneumoniae in an Indian hospital. Pathogens and Global Health. 2019;113(7):315-321. doi:10.1080/20477724.2019.1705020 at https://pubmed.ncbi.nlm.nih.gov/31865867/
- . Ranjbar R, Fatahian K, Chehelgerdi M. Molecular characterization, serotypes and phenotypic and genotypic evaluation of antibiotic resistance of the Klebsiella pneumoniae strains isolated from different types of hospital-acquired infections. Infectious Drug Resistance. 2019;12:603-611. doi:10.2147/IDR.S199639 at https://pubmed.ncbi.nlm.nih.gov/31114256/
- . Gahlot D, Taheri N, MacIntyre S. Diversity in genetic regulation of bacterial fimbriae assembled by the chaperone usher pathway. International journal of molecular sciences. 2023; 24(1):161. https://doi.org/10.3390/ijms24010161.
- . Mendoza-Barberá E, Merino S, Tomás J. Bacterial adhesion. Molecular Medical Microbiology. 2024;(12):359-375. DOI: 10.1016/B978-0-12-818619-0.00125-8.
- . Al-Kraety I, Alquraishi Z, Alsadawi A. Molecular study of Fimh Gene in Klebisella pneumoniae isolated from urinary catheter patients. Indian Journal of Forensic Medicine and Toxicology. 2020; 14(2):473- 477.
- . Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989;42: 872-874. doi:10.1136/jcp.42.8.872.
- . Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis. 2011 Jul-Aug;15(4):305-11. PMID: 21860999.
- . Liberto, M. C., Matera, G., Quirino, A., et al. Phenotypic and genotypic evaluation of slime production by conventional and molecular microbiological techniques. Microbiological Research. 2009;164(5), 522–528. DOI: 10.1016/j.micres.2007.04.004. PMID: 17928210.
- . Los R, Sawicki R, Juda M, et al. A comparative analysis of phenotypic and genotypic methods for the determination of the biofilm-forming abilities of Staphylococcus epidermidis, FEMS Microbiology Letters. 2010;310(2):97–103. DOI: 10.1111/j.1574-6968.2010.02050.x.
- . Mariana NS, Salman SA, Neela V, Zamberi, S. Evaluation of modified Congo red agar for detection of biofilm produced by clinical isolates of methicillin resistance Staphylococcus aureus. African Journal of Microbiology Research. 2009; 3(6):330-338.
- . Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The open microbiology journal. 2017;11:53. doi:10.2174/1874285801711010053.
- . Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine. 2013; 3(4):a010306. doi:10.1101/cshperspect.a010306.
- . Høiby N. A personal history of research on microbial biofilms and biofilm infections. Pathogens and disease. 2014;70(3):205–11. https://doi.org/10.1111/2049-632X.12165.
- . Douglas LJ. Candida biofilms and their role in infection. Trends in microbiology. 2003;11(1):30–6. doi:10.1016/s0966-842x(02)00002-1.
- . Al-Saady OMF. The effect of Ag- nanoparticles on Klebsiella pneumoniae biofilm formation and virulence genes. Ph.D thesis. Mustansiriyah University/College of Science. 2023.
- . Naqid IA, Hussein NR, Balatay AA, Saeed KA, Ahmed HA. The Antimicrobial resistance pattern of Klebsiella pneumoniae Isolated from the clinical specimens in Duhok City in Kurdistan region of Iraq. Journal of Kermanshah University of Medical Sciences. 2020;24(2). DOI: https://doi.org/10.5812/jkums.106135.
- . Nawaz S, Riaz S, Riaz S, Hasnain S. Screening foranti-methicillin resistant Staphylococcus aureus (MRSA) bacteriocin producing bacteria. African Journal of Biotechnology.2009;8:365–8. t http://www.academicjournals.org/AJB.
- . Wang C, Yuan Z, Huang W, Yan L, Tang J, Liu C. Epidemiologic analysis and control strategy of Klebsiella pneumoniae infection in intensive care units in a teaching hospital of people republic of China. Infection Drug Resistance. 2019;12:391–398. doi:10.2147/IDR.S189154.
- . Yang D, Zhang Z. Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended-spectrum β-lactamases, Journal of Hospital Infection. 2008;(68)4:369–371. doi:10.1016/j.jhin.2008.02.001.
- . Karimi K, Zarei O, Sedighi P, Taheri M, Doosti-Irani A, Shokoohizadeh L. Investigation of antibiotic resistance and biofilm formation in clinical isolates of Klebsiella pneumoniae. International Journal of Microbiology. 2021;7:1–6. doi:10.1155/2021/5573388.
- . Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, et al. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proceeding. 2019;13(S11): 20. doi:10.1186/s12919-019-0176-7.
- . M'Aiber S, Maamari K, Williams A, et al. The challenge of antibiotic resistance in post-war Mosul, Iraq: an analysis of 20 months of microbiological samples from a tertiary orthopedic care centre. Journal Global Antimicrobial Resistance.2022;30:311-318. doi:10.1016/j.jgar.2022.06.022
- . Younus NK. Phenotypic and genotypic characterization of multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolated from women with urinary tract infections in Mosul City. Iraqi Journal of Science. 2024:24-35. DOI: https://doi.org/10.24996/ijs.2024.65.1.3.
- . Li Y, Kumar S, Zhang L, Wu H. Klebsiella pneumoniae and its antibiotic resistance: a bibliometric analysis. Biomedical Research International. 2022;2022:1668789. doi:10.1155/2022/1668789.
- . Susethira AR, Uma A. Prevalence of Klebsiella bacteriuria and antimicrobial susceptibility in a tertiary care hospital, Tiruchirapalli,India. International Journal of Pharmaceutical and Clinical Research. 2016;8:53.
- . Sultan AM, Nabiel Y. Tube method and Congo red agar versus tissue culture plate method for detection of biofilm production by uropathogens isolated from midstream urine: Which one could be better?. African Journal of Clinical and Experimental Microbiology. 2019; 20(1):60–6. DOI:10.4314/ajcem.v20i1.9.
- . Basnet A, Tamang B, Shrestha MR, et al. Assessment of four in vitro phenotypic biofilm detection methods in relation to antimicrobial resistance in aerobic clinical bacterial isolates. PLoS ONE. 2023;18(11):e0294646. 6. https://doi.org/10.1371/journal.pone.0294646.
- . Normanita R, Kuntaman K, Bagus E et al. Validity of Congo Red Agar And Modified Congo Red Agar to detect biofilm of Enterococcus faecalis. Jurnal Saintika Medika. 2020;16(1):55-65. DOI 10.22219/sm.Vol16.SMUMM1.11064.
- . Mariana NS, Salman1 SA, Neela V, Zamberi S. Evaluation of modified Congo red agar for detection of biofilm produced by clinical isolates of methicillin– resistance Staphylococcus aureus. African Journal of Microbiology Research. 2009; 3(6):330-338. Available online at http://advancedresearchjournals.org/AJMR.
References
. Lam M. Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15. Journal of Antimicrobial Chemotherapy. 2019;74(5):1218–1222. doi:10.1093/jac/dkz028 at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477991.
. Awoke T, Teka B, Seman A, et al. High prevalence of multidrug- resistant Klebsiella pneumoniae in a tertiary care hospital in Ethiopia. Antibiotics. 2021;10(8):1007. doi:10.3390/antibiotics10081007 at https://pubmed.ncbi.nlm.nih.gov/34439057/
. Aljanaby A, Alhasnawi H. Phenotypic and molecular characterization of multidrug resistant Klebsiella pneumoniae isolated from different clinical sources in Al-Najaf province-Iraq. Pakistan Journal of Biology Science. 2017;20(5):217-232. doi:10.3923/pjbs.2017.217.232 at https://pubmed.ncbi.nlm.nih.gov/29023034/
. Fouad P. Incidence and antibiotic sensitivity of Klebsiella pneumonie isolated from urinary tract infection patients in Zakho emergency hospital/Iraq. Journal of Education and Science. 2020;29.3:257-268. DOI: 10.33899/edusj.2020.126827.1056.
. Sahoo R, Das A, Gaur M, et al. Genotypic validation of extended- spectrum β-lactamase and virulence factors in multidrug resistance Klebsiella pneumoniae in an Indian hospital. Pathogens and Global Health. 2019;113(7):315-321. doi:10.1080/20477724.2019.1705020 at https://pubmed.ncbi.nlm.nih.gov/31865867/
. Ranjbar R, Fatahian K, Chehelgerdi M. Molecular characterization, serotypes and phenotypic and genotypic evaluation of antibiotic resistance of the Klebsiella pneumoniae strains isolated from different types of hospital-acquired infections. Infectious Drug Resistance. 2019;12:603-611. doi:10.2147/IDR.S199639 at https://pubmed.ncbi.nlm.nih.gov/31114256/
. Gahlot D, Taheri N, MacIntyre S. Diversity in genetic regulation of bacterial fimbriae assembled by the chaperone usher pathway. International journal of molecular sciences. 2023; 24(1):161. https://doi.org/10.3390/ijms24010161.
. Mendoza-Barberá E, Merino S, Tomás J. Bacterial adhesion. Molecular Medical Microbiology. 2024;(12):359-375. DOI: 10.1016/B978-0-12-818619-0.00125-8.
. Al-Kraety I, Alquraishi Z, Alsadawi A. Molecular study of Fimh Gene in Klebisella pneumoniae isolated from urinary catheter patients. Indian Journal of Forensic Medicine and Toxicology. 2020; 14(2):473- 477.
. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989;42: 872-874. doi:10.1136/jcp.42.8.872.
. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis. 2011 Jul-Aug;15(4):305-11. PMID: 21860999.
. Liberto, M. C., Matera, G., Quirino, A., et al. Phenotypic and genotypic evaluation of slime production by conventional and molecular microbiological techniques. Microbiological Research. 2009;164(5), 522–528. DOI: 10.1016/j.micres.2007.04.004. PMID: 17928210.
. Los R, Sawicki R, Juda M, et al. A comparative analysis of phenotypic and genotypic methods for the determination of the biofilm-forming abilities of Staphylococcus epidermidis, FEMS Microbiology Letters. 2010;310(2):97–103. DOI: 10.1111/j.1574-6968.2010.02050.x.
. Mariana NS, Salman SA, Neela V, Zamberi, S. Evaluation of modified Congo red agar for detection of biofilm produced by clinical isolates of methicillin resistance Staphylococcus aureus. African Journal of Microbiology Research. 2009; 3(6):330-338.
. Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The open microbiology journal. 2017;11:53. doi:10.2174/1874285801711010053.
. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine. 2013; 3(4):a010306. doi:10.1101/cshperspect.a010306.
. Høiby N. A personal history of research on microbial biofilms and biofilm infections. Pathogens and disease. 2014;70(3):205–11. https://doi.org/10.1111/2049-632X.12165.
. Douglas LJ. Candida biofilms and their role in infection. Trends in microbiology. 2003;11(1):30–6. doi:10.1016/s0966-842x(02)00002-1.
. Al-Saady OMF. The effect of Ag- nanoparticles on Klebsiella pneumoniae biofilm formation and virulence genes. Ph.D thesis. Mustansiriyah University/College of Science. 2023.
. Naqid IA, Hussein NR, Balatay AA, Saeed KA, Ahmed HA. The Antimicrobial resistance pattern of Klebsiella pneumoniae Isolated from the clinical specimens in Duhok City in Kurdistan region of Iraq. Journal of Kermanshah University of Medical Sciences. 2020;24(2). DOI: https://doi.org/10.5812/jkums.106135.
. Nawaz S, Riaz S, Riaz S, Hasnain S. Screening foranti-methicillin resistant Staphylococcus aureus (MRSA) bacteriocin producing bacteria. African Journal of Biotechnology.2009;8:365–8. t http://www.academicjournals.org/AJB.
. Wang C, Yuan Z, Huang W, Yan L, Tang J, Liu C. Epidemiologic analysis and control strategy of Klebsiella pneumoniae infection in intensive care units in a teaching hospital of people republic of China. Infection Drug Resistance. 2019;12:391–398. doi:10.2147/IDR.S189154.
. Yang D, Zhang Z. Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended-spectrum β-lactamases, Journal of Hospital Infection. 2008;(68)4:369–371. doi:10.1016/j.jhin.2008.02.001.
. Karimi K, Zarei O, Sedighi P, Taheri M, Doosti-Irani A, Shokoohizadeh L. Investigation of antibiotic resistance and biofilm formation in clinical isolates of Klebsiella pneumoniae. International Journal of Microbiology. 2021;7:1–6. doi:10.1155/2021/5573388.
. Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, et al. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proceeding. 2019;13(S11): 20. doi:10.1186/s12919-019-0176-7.
. M'Aiber S, Maamari K, Williams A, et al. The challenge of antibiotic resistance in post-war Mosul, Iraq: an analysis of 20 months of microbiological samples from a tertiary orthopedic care centre. Journal Global Antimicrobial Resistance.2022;30:311-318. doi:10.1016/j.jgar.2022.06.022
. Younus NK. Phenotypic and genotypic characterization of multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolated from women with urinary tract infections in Mosul City. Iraqi Journal of Science. 2024:24-35. DOI: https://doi.org/10.24996/ijs.2024.65.1.3.
. Li Y, Kumar S, Zhang L, Wu H. Klebsiella pneumoniae and its antibiotic resistance: a bibliometric analysis. Biomedical Research International. 2022;2022:1668789. doi:10.1155/2022/1668789.
. Susethira AR, Uma A. Prevalence of Klebsiella bacteriuria and antimicrobial susceptibility in a tertiary care hospital, Tiruchirapalli,India. International Journal of Pharmaceutical and Clinical Research. 2016;8:53.
. Sultan AM, Nabiel Y. Tube method and Congo red agar versus tissue culture plate method for detection of biofilm production by uropathogens isolated from midstream urine: Which one could be better?. African Journal of Clinical and Experimental Microbiology. 2019; 20(1):60–6. DOI:10.4314/ajcem.v20i1.9.
. Basnet A, Tamang B, Shrestha MR, et al. Assessment of four in vitro phenotypic biofilm detection methods in relation to antimicrobial resistance in aerobic clinical bacterial isolates. PLoS ONE. 2023;18(11):e0294646. 6. https://doi.org/10.1371/journal.pone.0294646.
. Normanita R, Kuntaman K, Bagus E et al. Validity of Congo Red Agar And Modified Congo Red Agar to detect biofilm of Enterococcus faecalis. Jurnal Saintika Medika. 2020;16(1):55-65. DOI 10.22219/sm.Vol16.SMUMM1.11064.
. Mariana NS, Salman1 SA, Neela V, Zamberi S. Evaluation of modified Congo red agar for detection of biofilm produced by clinical isolates of methicillin– resistance Staphylococcus aureus. African Journal of Microbiology Research. 2009; 3(6):330-338. Available online at http://advancedresearchjournals.org/AJMR.