ANTIBIOTICS RESISTANCE RISK ASSOCIATED WITH ANTIBIOTIC OVERUSE
Downloads
Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care, where bacteria cause most infections. About 90% of all antibiotic prescriptions are issued by general practitioners, and respiratory tract infections are the leading reason for prescribing. Multifaceted interventions to reduce overuse of antibiotics have been found to be effective and better than single initiatives. Interventions should encompass the enforcement of the policy of prohibiting the over-thecounter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of- care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid of information brochures and the performance of more pragmatic studies in primary care with outcomes that are of clinicians’ interest, such as complications and clinical outcomes.
. Llor, C., & Bjerrum, L. (2014). Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic advances in drug safety, 5(6), 229-241.
. Infectious Diseases Society of America, Spellberg, B., Blaser, M., Guidos, R., Boucher, H., Bradley, J. et al. (2011) Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis 52(Suppl. 5): S397–S428.
. World Health Organization (2014) WHO’S first global report on antibiotic resistance reveals serious, worldwide threat to public health. Antimicrobial resistance – global surveillance report. Virtual Press Conference. 30 April 2014.
. Society for Healthcare Epidemiology of America, Infectious Diseases Society of America, and Pediatric Infectious Diseases Society (2012) Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America, the Infectious Diseases Society of America, and the Pediatric Infectious Diseases Society. Infect Control Hosp Epidemiol 33: 322–327.
. Boucher, H., Talbot, G., Benjamin, D. Jr, Bradley, J., Guidos, R., Jones, R. et al. (2013) 10 × '20 progress— development of new drugs active against Gram- negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56: 1685–1694.
. National Collaborating Centre for Infectious Diseases (2010) Proceedings of Community-Acquired Antimicrobial Resistance Consultation Notes, Winnipeg, MB, Canada, 10–11 February 2010. Available at: http://www.nccid.ca/files/caAMR_ConsultationNotes_final.pdf (Accessed: 24 August 2014).
. Centers for Disease Control and Prevention (2012) Diseases/pathogens associated with antimicrobial resistance. Available at: http://www.cdc.gov/ drugresistance/DiseasesConnectedAR.html (Accessed: 24 August 2014).
. European Centre for Disease Prevention and Control (2010) Surveillance report. Surveillance of antimicrobial consumption in Europe. 2010.
. Public Health England (2012) Management of Infection Guidance for Primary Care for Consultation and Local Adaptation. November 2012, revised February 2013. Available at: http://www.hpa. org.uk/Topics/InfectiousDiseases/InfectionsAZ/ PrimaryCareGuidance/ (Accessed: 24 August 2014).
. Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013;4:47. [PMC free article] [PubMed] [Google Scholar]
. Piddock LJ. The crisis of no new antibiotics—what is the way forward? Lancet Infect Dis. 2012;12(3):249–253. [PubMed] [Google Scholar].
. Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can overcome microbial resistance. Virulence. 2013;4(2):185–191. [PMC free article (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654619/?report=reader)] [PubMed (https://pubmed.ncbi.nlm.nih.gov/23302792)] [Google Scholar].
. Centers for Disease Control and Prevention, Office of Infectious Disease Antibiotic resistance threats in the United States, 2013. Apr, 2013. Available at: http://www.cdc.gov/drugresistance/threat-report-2013. Accessed January 28, 2015.
. Spellberg B, Gilbert DN. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis. 2014;59 (suppl 2):S71–S75. [PMC free article (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176319/?report=reader)] [PubMed (https://pubmed.ncbi.nlm.nih.gov/25151481)] [Google Scholar].
. Wright GD. Something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol. 2014;60(3):147–154. [PubMed (https://pubmed.ncbi.nlm.nih.gov/24588388)] [Google Scholar].
. Congressional Research Service Report Life expectancy in the United States. Mar, 2005. Available at: http://www.cnie.org/nle/crsreports/05mar/RL32792.pdf. Accessed January 5, 2015.
. Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic resistance crisis. Clin Opin Pharmacol. 2014;18:56–60. [PubMed (https://pubmed.ncbi.nlm.nih.gov/25254623)] [Google Scholar].
. Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin Infect Dis. 2013;56(10):1445–1450. [PubMed (https://pubmed.ncbi.nlm.nih.gov/23403172)] [Google Scholar].
. Gelles D. Merck in $8.4 billion deal for Cubist, big maker of antibiotics. New York Times. Dec 8, 2014. Available at: http://dealbook.nytimes.com/2014/12/08/merck-agrees-to-acquire-drug-maker-cubist-for-9-5-billion. Accessed January 5, 2015.
. The antibiotic alarm. Nature. 2013;495(7440):141. [PubMed (https://pubmed.ncbi.nlm.nih.gov/23495392)] [Google Scholar (https://scholar.google.com/scholar_lookup?journal=Nature&title=The+antibiotic+alarm&volume=495&issue=7440&publication_year=2013&pages=141&)].
. Luyt CE, Brechot N, Trouillet JL, Chastre J. Antibiotic stewardship in the intensive care unit. Crit Care. 2014;18(5):480. [PMC free article (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281952/?report=reader)] [PubMed (https://pubmed.ncbi.nlm.nih.gov/25405992)] [Google Scholar].
. Lushniak BD. Antibiotic resistance: a public health crisis. Public Health Rep. 2014;129(4):314–316. [PMC free article (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037453/?report=reader)] [PubMed (https://pubmed.ncbi.nlm.nih.gov/24982528)] [Google Scholar].
. Viswanathan VK. Off-label abuse of antibiotics by bacteria. Gut Microbes. 2014;5(1):3–4. [PMC free article (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049933/?report=reader)] [PubMed (https://pubmed.ncbi.nlm.nih.gov/24637595)] [Google Scholar].
. Gross M. Antibiotics in crisis. Curr Biol. 2013;23(24):R1063–R1065. [PubMed (https://pubmed.ncbi.nlm.nih.gov/24501765)] [Google Scholar].
. Michael CA, Dominey-Howes D, Labbate M. The antibiotic resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145. [PMC free article (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165128/?report=reader)] [PubMed (https://pubmed.ncbi.nlm.nih.gov/25279369)] [Google Scholar].
. Golkar Z, Bagazra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8(2):129–136. 13. [PubMed (https://pubmed.ncbi.nlm.nih.gov/24518621)] [Google Scholar ].
. Mahon CR, Lehman DC, Manuselis G. Textbook of Diagnostic Microbiology. St. Louis: Saunders; 2014. Antimicrobial agent mechanisms of action and resistance; pp. 254–273.
. Blair JM, Richmond GE, Piddock LJ. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014;9:1165–1177.
. Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliver Rev. 2005;57:1486–1513.
. Bébéar CM, Pereyre S. Mechanisms of drug resistance in Mycoplasma pneumoniae. Curr Drug Targets. 2005;5:263–271.
. Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in gram-positive bacteria and mycobacteria. J Appl Microbiol. 2002;92:46S–54S.
. Gill MJ, Simjee S, Al-Hattawi K, et al. Gonococcal resistance to β-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Ch. 1998;42:2799–2803.
. Cornaglia G, Mazzariol A, Fontana R, et al. Diffusion of carbapenems through the outer membrane of enterobacteriaceae and correlation of their activities with their periplasmic concentrations. Microb Drug Resist. 1996;2:273–276.
. Thiolas A, Bornet C, Davin-Régli A, et al. Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes. Biochem Bioph Res Co. 2004;317:851–856.
. Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol. 2012;7:1061–1072.
. Reygaert WC. Methicillin-resistant Staphylococcus aureus (MRSA): molecular aspects of antimicrobial resistance and virulence. Clin Lab Sci. 2009;22:115–119.
. Randall CP, Mariner KR, Chopra I, et al. The target of daptomycin is absent form Escherichia coli and other gram-negative pathogens. Antimicrob Agents Ch. 2013;57:637–639.
. Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol. 2013;303:287–292.
. Yang SJ, Kreiswirth BN, Sakoulas G, et al. Enhanced expression of dltABCD is associated with development of daptomycin nonsusceptibility in a clinical endocarditis isolate of Staphylococcus aureus. J Infect Dis. 2009;200:1916–1920.
. Kumar S, Mukherjee MM, Varela MF. Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol. 2013
. Redgrave LS, Sutton SB, Webber MA, et al. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22:438–445.
. Huovinen P, Sundström L, Swedberg G, et al. Trimethoprim and sulfonamide resistance. Antimicrob Agents Ch. 1995;39:279–289.
. Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.
. Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. CSH Perspect Med. 2016;6:a02527.
. Toth M, Antunes NT, Stewart NK, et al. Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol. 2016;12:9–14.
. Chancey ST, Zähner D, Stephens DS. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol. 2012;7:959–978.
. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemoth. 2017;72:2145–2155.
. Bajaj P, Singh NS, Virdi JS. Escherichia coli β-lactamases: what really matters. Front Microbiol. 2016;7:417.
. Docquier JD, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resist Update. 2018;36:13–29.
. Jo I, Hong S, Lee M, et al. Stoichiometry and mechanistic implications of the MacAB-TolC tripartite efflux pump. Biochem Bioph Res Co. 2017;494:668–673.
. Costa SS, Viveiros M, Amaral L, et al. Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J. 2013;7:59–71.
. Bergman, M., Huikko, S., Pihlajamäki, M., Laippala, P., Palva, E., Huovinen, P. et al. (2004) Effect of macrolide consumption on erythromycin resistance in Streptococcus pyogenes in Finland in 1997–2001. Clin Infect Dis 38: 1251–1256.
. Gonzales, R., Anderer, T., McCulloch, C., Maselli, J., Bloom, F. Jr, Graf, T. et al. (2013) A cluster randomized trial of decision support strategies for reducing antibiotic use in acute bronchitis. JAMA Intern Med 173: 267–273.
. Morgan, D., Okeke, I., Laxminarayan, R., Perencevich, E. and Weisenberg, S. (2011) Non prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis 11: 692–701.
. Huttner, B., Goossens, H., Verheij, T. and Harbarth, S. (2010) Characteristics and outcomes of public campaigns aimed at improving the use of antibiotics in outpatients in high-income countries. Lancet Infect Dis 10: 17–31.
. Cals, J. and van Weert, H. (2013) Point-of-care tests in general practice: hope or hype? Eur J Gen Pract 19: 251–256.
. Høye, S., Gjelstad, S. and Lindbæk, M. (2013) Effects on antibiotic dispensing rates of interventions to promote delayed prescribing for respiratory tract infections in primary care. Br J Gen Pract 63: e777–e786.
Copyright (c) 2024 Hawraa Hadi Ali Rabat, Fatima Sadiq Abd Al Hussein Mashed, Wuroud Saad Muhammed Hassoun, Teba Adnan saber Tamig, Sabreen sahib Mohsin Abbas

This work is licensed under a Creative Commons Attribution 4.0 International License.














