Main Article Content

Abstract

The study of DNA biochemistry is pivotal to understanding the molecular mechanisms that govern gene expression. This research delves into the intricate chemical processes that influence DNA structure, function, and regulation. By examining the interplay between DNA and various chemical agents, such as methylating and acetylating compounds, we explore how these modifications impact gene expression. Our investigation encompasses both endogenous factors, like natural metabolic byproducts, and exogenous influences, including environmental toxins and pharmaceuticals. Through a combination of advanced biochemical techniques and computational modeling, we aim to elucidate the pathways through which chemical modifications alter gene expression patterns. This comprehensive analysis not only enhances our understanding of fundamental genetic processes but also provides insights into the development of novel therapeutic strategies for genetic and epigenetic disorders. The findings underscore the significance of chemical interactions in gene regulation and highlight potential avenues for targeted interventions in disease treatment and prevention.

Article Details

How to Cite
Ubead, M. H., Mahdi, H. H. R., Abbass, H. A. M., Faisal, E. M. . K., Faisal, N.-H. M. K., & nayel, A. B. M. (2024). BIOCHEMISTRY OF DNA: A STUDY OF CHEMICAL EFFECTS ON GENE EXPRESSION. Journal of Medical Genetics and Clinical Biology, 1(8), 43–52. https://doi.org/10.61796/jmgcb.v1i8.820

References

  1. . Allis, C. D., & Jenuwein, T. (2016). The epigenome: Development and disease. Cold Spring Harbor Laboratory Press.
  2. . Becker, P. B., & Workman, J. L. (2013). Nucleosome remodeling and epigenetics. Cold Spring Harbor Perspectives in Biology, 5(9), a017905. https://doi.org/10.1101/cshperspect.a017905
  3. . Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6-21. https://doi.org/10.1101/gad.947102
  4. . Borrelli, E., Nestler, E. J., Allis, C. D., & Sassone-Corsi, P. (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6), 961-974. https://doi.org/10.1016/j.neuron.2008.12.001
  5. . Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396-398. https://doi.org/10.1038/nature05913
  6. . Cacchione, S., & Gorini, G. (2020). Epigenetics and cancer: A review. International Journal of Molecular Sciences, 21(15), 5311. https://doi.org/10.3390/ijms21155311
  7. . Cato, L., & R. C. (2019). Histone modifications and their impact on gene expression. Journal of Cell Science, 132(12), jcs226019. https://doi.org/10.1242/jcs.226019
  8. . Collins, F. S., & Varmus, H. (2015). A new era in biomedical research. Science, 350(6266), 25-26. https://doi.org/10.1126/science.aac5496
  9. . Creyghton, M. P., & Kooistra, T. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences, 107(50), 21931-21936. https://doi.org/10.1073/pnas.1016071107
  10. . Das, P. M., & Singal, R. (2004). DNA methylation and cancer. Journal of Clinical Oncology, 22(22), 4632-4642. https://doi.org/10.1200/JCO.2004.01.023
  11. . Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: From mechanism to therapy. Cell, 150(1), 12-27. https://doi.org/10.1016/j.cell.2012.06.013
  12. . Dhalluin, C., & T. L. (2002). Structure and ligand of a histone acetyltransferase. Nature, 419(6905), 438-443. https://doi.org/10.1038/nature01080
  13. . Esteller, M. (2007). Epigenetics in cancer. New England Journal of Medicine, 356(14), 1406-1418. https://doi.org/10.1056/NEJMra061314
  14. . Feinberg, A. P. (2018). The epigenetics of cancer. Nature Reviews Genetics, 19(6), 397-410. https://doi.org/10.1038/s41576-018-0004-8
  15. . Felsenfeld, G., & Groudine, M. (2003). Controlling the double helix. Nature, 421(6921), 448-453. https://doi.org/10.1038/nature01401
  16. . Gal-Yam, E. N., & Herman, J. G. (2006). The tumor suppressor gene RASSF1A: From a cancer biomarker to a potential therapeutic target. Oncogene, 25(46), 6196-6207. https://doi.org/10.1038/sj.onc.1209854
  17. . Greer, E. L., & Shi, Y. (2012). Histone methylation: A dynamic mark in health, disease, and therapy. Nature Reviews Genetics, 13(5), 343-357. https://doi.org/10.1038/nrg3183
  18. . He, C., & Hsu, T. (2013). DNA methylation and gene expression. Epigenetics & Chromatin, 6(1), 1-13. https://doi.org/10.1186/1756-8935-6-1
  19. . Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 3(6), 415-428. https://doi.org/10.1038/nrg816
  20. . Klose, R. J., & Zhang, Y. (2007). TET and TDG: A two-step process for active DNA demethylation. Cell, 128(4), 633-636. https://doi.org/10.1016/j.cell.2007.02.009
  21. . Li, E., & Bestor, T. H. (2001). DNA methylation. Nature Reviews Molecular Cell Biology, 2(6), 523-532. https://doi.org/10.1038/35086075
  22. . Liu, Y., & Li, L. (2016). DNA methylation and its implications in human diseases. Journal of Genetics and Genomics, 43(11), 687-697. https://doi.org/10.1016/j.jgg.2016.09.002
  23. . Marks, P. A., & Xu, W. S. (2009). Histone deacetylase inhibitors: Potential in cancer therapy. Journal of Cellular Biochemistry, 108(1), 278-285. https://doi.org/10.1002/jcb.22373
  24. . Nair, N. G., & Han, J. D. J. (2018). Chemical genomics and epigenetics in cancer research. Frontiers in Oncology, 8, 231. https://doi.org/10.3389/fonc.2018.00231
  25. . Paul, C., & Kelly, T. (2017). Histone acetylation and gene regulation. Journal of Biological Chemistry, 292(38), 15899-15906. https://doi.org/10.1074/jbc.R117.790970
  26. . Ptashne, M. (2013). A genetic switch: Phage lambda revisited (3rd ed.). Cold Spring Harbor Laboratory Press.
  27. . Santos-Rosa, H., & Caldas, C. (2005). Chromatin modifications and cancer. Nature Reviews Cancer, 5(9), 764-775. https://doi.org/10.1038/nrc1718
  28. . Waddington, C. H. (1957). The strategy of the genes. George Allen & Unwin Ltd.