Main Article Content
Abstract
The study of DNA biochemistry is pivotal to understanding the molecular mechanisms that govern gene expression. This research delves into the intricate chemical processes that influence DNA structure, function, and regulation. By examining the interplay between DNA and various chemical agents, such as methylating and acetylating compounds, we explore how these modifications impact gene expression. Our investigation encompasses both endogenous factors, like natural metabolic byproducts, and exogenous influences, including environmental toxins and pharmaceuticals. Through a combination of advanced biochemical techniques and computational modeling, we aim to elucidate the pathways through which chemical modifications alter gene expression patterns. This comprehensive analysis not only enhances our understanding of fundamental genetic processes but also provides insights into the development of novel therapeutic strategies for genetic and epigenetic disorders. The findings underscore the significance of chemical interactions in gene regulation and highlight potential avenues for targeted interventions in disease treatment and prevention.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- . Allis, C. D., & Jenuwein, T. (2016). The epigenome: Development and disease. Cold Spring Harbor Laboratory Press.
- . Becker, P. B., & Workman, J. L. (2013). Nucleosome remodeling and epigenetics. Cold Spring Harbor Perspectives in Biology, 5(9), a017905. https://doi.org/10.1101/cshperspect.a017905
- . Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6-21. https://doi.org/10.1101/gad.947102
- . Borrelli, E., Nestler, E. J., Allis, C. D., & Sassone-Corsi, P. (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6), 961-974. https://doi.org/10.1016/j.neuron.2008.12.001
- . Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396-398. https://doi.org/10.1038/nature05913
- . Cacchione, S., & Gorini, G. (2020). Epigenetics and cancer: A review. International Journal of Molecular Sciences, 21(15), 5311. https://doi.org/10.3390/ijms21155311
- . Cato, L., & R. C. (2019). Histone modifications and their impact on gene expression. Journal of Cell Science, 132(12), jcs226019. https://doi.org/10.1242/jcs.226019
- . Collins, F. S., & Varmus, H. (2015). A new era in biomedical research. Science, 350(6266), 25-26. https://doi.org/10.1126/science.aac5496
- . Creyghton, M. P., & Kooistra, T. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences, 107(50), 21931-21936. https://doi.org/10.1073/pnas.1016071107
- . Das, P. M., & Singal, R. (2004). DNA methylation and cancer. Journal of Clinical Oncology, 22(22), 4632-4642. https://doi.org/10.1200/JCO.2004.01.023
- . Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: From mechanism to therapy. Cell, 150(1), 12-27. https://doi.org/10.1016/j.cell.2012.06.013
- . Dhalluin, C., & T. L. (2002). Structure and ligand of a histone acetyltransferase. Nature, 419(6905), 438-443. https://doi.org/10.1038/nature01080
- . Esteller, M. (2007). Epigenetics in cancer. New England Journal of Medicine, 356(14), 1406-1418. https://doi.org/10.1056/NEJMra061314
- . Feinberg, A. P. (2018). The epigenetics of cancer. Nature Reviews Genetics, 19(6), 397-410. https://doi.org/10.1038/s41576-018-0004-8
- . Felsenfeld, G., & Groudine, M. (2003). Controlling the double helix. Nature, 421(6921), 448-453. https://doi.org/10.1038/nature01401
- . Gal-Yam, E. N., & Herman, J. G. (2006). The tumor suppressor gene RASSF1A: From a cancer biomarker to a potential therapeutic target. Oncogene, 25(46), 6196-6207. https://doi.org/10.1038/sj.onc.1209854
- . Greer, E. L., & Shi, Y. (2012). Histone methylation: A dynamic mark in health, disease, and therapy. Nature Reviews Genetics, 13(5), 343-357. https://doi.org/10.1038/nrg3183
- . He, C., & Hsu, T. (2013). DNA methylation and gene expression. Epigenetics & Chromatin, 6(1), 1-13. https://doi.org/10.1186/1756-8935-6-1
- . Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 3(6), 415-428. https://doi.org/10.1038/nrg816
- . Klose, R. J., & Zhang, Y. (2007). TET and TDG: A two-step process for active DNA demethylation. Cell, 128(4), 633-636. https://doi.org/10.1016/j.cell.2007.02.009
- . Li, E., & Bestor, T. H. (2001). DNA methylation. Nature Reviews Molecular Cell Biology, 2(6), 523-532. https://doi.org/10.1038/35086075
- . Liu, Y., & Li, L. (2016). DNA methylation and its implications in human diseases. Journal of Genetics and Genomics, 43(11), 687-697. https://doi.org/10.1016/j.jgg.2016.09.002
- . Marks, P. A., & Xu, W. S. (2009). Histone deacetylase inhibitors: Potential in cancer therapy. Journal of Cellular Biochemistry, 108(1), 278-285. https://doi.org/10.1002/jcb.22373
- . Nair, N. G., & Han, J. D. J. (2018). Chemical genomics and epigenetics in cancer research. Frontiers in Oncology, 8, 231. https://doi.org/10.3389/fonc.2018.00231
- . Paul, C., & Kelly, T. (2017). Histone acetylation and gene regulation. Journal of Biological Chemistry, 292(38), 15899-15906. https://doi.org/10.1074/jbc.R117.790970
- . Ptashne, M. (2013). A genetic switch: Phage lambda revisited (3rd ed.). Cold Spring Harbor Laboratory Press.
- . Santos-Rosa, H., & Caldas, C. (2005). Chromatin modifications and cancer. Nature Reviews Cancer, 5(9), 764-775. https://doi.org/10.1038/nrc1718
- . Waddington, C. H. (1957). The strategy of the genes. George Allen & Unwin Ltd.
References
. Allis, C. D., & Jenuwein, T. (2016). The epigenome: Development and disease. Cold Spring Harbor Laboratory Press.
. Becker, P. B., & Workman, J. L. (2013). Nucleosome remodeling and epigenetics. Cold Spring Harbor Perspectives in Biology, 5(9), a017905. https://doi.org/10.1101/cshperspect.a017905
. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6-21. https://doi.org/10.1101/gad.947102
. Borrelli, E., Nestler, E. J., Allis, C. D., & Sassone-Corsi, P. (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6), 961-974. https://doi.org/10.1016/j.neuron.2008.12.001
. Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396-398. https://doi.org/10.1038/nature05913
. Cacchione, S., & Gorini, G. (2020). Epigenetics and cancer: A review. International Journal of Molecular Sciences, 21(15), 5311. https://doi.org/10.3390/ijms21155311
. Cato, L., & R. C. (2019). Histone modifications and their impact on gene expression. Journal of Cell Science, 132(12), jcs226019. https://doi.org/10.1242/jcs.226019
. Collins, F. S., & Varmus, H. (2015). A new era in biomedical research. Science, 350(6266), 25-26. https://doi.org/10.1126/science.aac5496
. Creyghton, M. P., & Kooistra, T. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences, 107(50), 21931-21936. https://doi.org/10.1073/pnas.1016071107
. Das, P. M., & Singal, R. (2004). DNA methylation and cancer. Journal of Clinical Oncology, 22(22), 4632-4642. https://doi.org/10.1200/JCO.2004.01.023
. Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: From mechanism to therapy. Cell, 150(1), 12-27. https://doi.org/10.1016/j.cell.2012.06.013
. Dhalluin, C., & T. L. (2002). Structure and ligand of a histone acetyltransferase. Nature, 419(6905), 438-443. https://doi.org/10.1038/nature01080
. Esteller, M. (2007). Epigenetics in cancer. New England Journal of Medicine, 356(14), 1406-1418. https://doi.org/10.1056/NEJMra061314
. Feinberg, A. P. (2018). The epigenetics of cancer. Nature Reviews Genetics, 19(6), 397-410. https://doi.org/10.1038/s41576-018-0004-8
. Felsenfeld, G., & Groudine, M. (2003). Controlling the double helix. Nature, 421(6921), 448-453. https://doi.org/10.1038/nature01401
. Gal-Yam, E. N., & Herman, J. G. (2006). The tumor suppressor gene RASSF1A: From a cancer biomarker to a potential therapeutic target. Oncogene, 25(46), 6196-6207. https://doi.org/10.1038/sj.onc.1209854
. Greer, E. L., & Shi, Y. (2012). Histone methylation: A dynamic mark in health, disease, and therapy. Nature Reviews Genetics, 13(5), 343-357. https://doi.org/10.1038/nrg3183
. He, C., & Hsu, T. (2013). DNA methylation and gene expression. Epigenetics & Chromatin, 6(1), 1-13. https://doi.org/10.1186/1756-8935-6-1
. Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 3(6), 415-428. https://doi.org/10.1038/nrg816
. Klose, R. J., & Zhang, Y. (2007). TET and TDG: A two-step process for active DNA demethylation. Cell, 128(4), 633-636. https://doi.org/10.1016/j.cell.2007.02.009
. Li, E., & Bestor, T. H. (2001). DNA methylation. Nature Reviews Molecular Cell Biology, 2(6), 523-532. https://doi.org/10.1038/35086075
. Liu, Y., & Li, L. (2016). DNA methylation and its implications in human diseases. Journal of Genetics and Genomics, 43(11), 687-697. https://doi.org/10.1016/j.jgg.2016.09.002
. Marks, P. A., & Xu, W. S. (2009). Histone deacetylase inhibitors: Potential in cancer therapy. Journal of Cellular Biochemistry, 108(1), 278-285. https://doi.org/10.1002/jcb.22373
. Nair, N. G., & Han, J. D. J. (2018). Chemical genomics and epigenetics in cancer research. Frontiers in Oncology, 8, 231. https://doi.org/10.3389/fonc.2018.00231
. Paul, C., & Kelly, T. (2017). Histone acetylation and gene regulation. Journal of Biological Chemistry, 292(38), 15899-15906. https://doi.org/10.1074/jbc.R117.790970
. Ptashne, M. (2013). A genetic switch: Phage lambda revisited (3rd ed.). Cold Spring Harbor Laboratory Press.
. Santos-Rosa, H., & Caldas, C. (2005). Chromatin modifications and cancer. Nature Reviews Cancer, 5(9), 764-775. https://doi.org/10.1038/nrc1718
. Waddington, C. H. (1957). The strategy of the genes. George Allen & Unwin Ltd.