SKIN THERAPY USING COLD ATMOSPHERIC PLASMA
Downloads
Background: Maintaining skin integrity is essential for protecting against external agents, microorganisms, and dehydration, while also serving social and aesthetic functions. Recent advancements in skin care have introduced innovative technologies, including Cold Atmospheric Plasma (CAP), which shows promising results in dermatology. Specific Background: CAP technology, based on physical principles, has emerged as a novel approach in skin treatments, offering potential benefits for aging prevention and skin care. This interdisciplinary field encompasses physics, biology, chemistry, and biochemistry, presenting a complex landscape. Knowledge Gap: Despite its potential, there is limited comprehensive analysis of CAP's interactions with skin, its effects, and its practical applications in cosmetic dermatology. Aims: This research aims to provide a broad survey of CAP's interactions with skin by discussing the basic structure and functions of the skin, the foundational principles of CAP, and its physical and chemical properties. The study will analyze CAP parameters to highlight known effects and explore potential applications in skin treatment. Results: The review reveals that CAP exhibits versatile applications in dermatology, including direct treatment of superficial lesions, indirect treatment via plasma-activated media, and combined use with other therapies. CAP has shown promise in optimizing intact skin, facilitating transdermal drug delivery, and minimizing side effects. However, challenges remain in integrating CAP into routine clinical practice. Novelty: This overview synthesizes current knowledge and emerging potential of CAP technology in skin biology, offering a comprehensive evaluation of its effects and applications. Implications: The findings underscore CAP's potential to revolutionize skin care and dermatological treatments. Addressing the existing challenges and expanding research could enable CAP to become a valuable tool in both therapeutic and cosmetic dermatology.
Zanza, C.; Romenskaya, T.; Thangathurai, D.; Ojetti, V.; Saviano, A.; Abenavoli, L.; Robba, C.; Cammarota, G.; Franceschi, F.; Piccioni, A.; et al. Microbiome in Critical Care: An Unconventional and Unknown Ally. Curr. Med. Chem. 2022, 29, 3179–3188.
Miller, P.; Smith, I.M.; White, D.M. Wound Management in the ICU. In Interventional Critical Care; Taylor, D.A., Sherry, S.P., Sing, R.F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 401–409.
Soni, K.D.; Bansal, V.; Arora, H.; Verma, S.; Wärnberg, M.G.; Roy, N. The State of Global Trauma and Acute Care Surgery/Surgical Critical Care. Crit. Care Clin. 2022, 38, 695–706.
Klausen, M.; Heydorn, A.; Ragas, P.; Lambertsen, L.; Aaes-Jørgensen, A.; Molin, S.; Tolker-Nielsen, T. Biofilm Formation by Pseudomonas Aeruginosa Wild Type, Flagella and Type IV Pili Mutants: Roles of Bacterial Motility in the Formation of the Flat P. Aeruginosa Biofilm. Mol. Microbiol. 2003, 48, 1511–1524.
Smolle, C.; Cambiaso-Daniel, J.; Forbes, A.A.; Wurzer, P.; Hundeshagen, G.; Branski, L.K.; Huss, F.; Kamolz, L.-P. Recent Trends in Burn Epidemiology Worldwide: A Systematic Review. Burns 2017, 43, 249–257.
Meskini, M.; Esmaeili, D. The Study of Formulated Zoush Ointment against Wound Infection and Gene Expression of Virulence Factors Pseudomonas Aeruginosa. BMC Complement. Altern. Med. 2018, 18, 185.
Bates, D.W.; Larizgoitia, I.; Prasopa-Plaizier, N.; Jha, A.K.; Research Priority Setting Working Group of the WHO World Alliance for Patient Safety. Global Priorities for Patient Safety Research. BMJ 2009, 338, b1775.
Allegranzi, B.; Bagheri Nejad, S.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of Endemic Health-Care-Associated Infection in Developing Countries: Systematic Review and Meta-Analysis. Lancet 2011, 377, 228–241.
Burke, J.P. Infection Control—A Problem for Patient Safety. N. Engl. J. Med. 2003, 348, 651–656.
Cassini, A.; Plachouras, D.; Eckmanns, T.; Abu Sin, M.; Blank, H.-P.; Ducomble, T.; Haller, S.; Harder, T.; Klingeberg, A.; Sixtensson, M.; et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 2016, 13, e1002150.
Stegensek Mejía, E.M.; Jiménez Mendoza, A.; Romero Gálvez, L.E.; Aparicio Aguilar, A. Úlceras por presión en diversos servicios de un hospital de segundo nivel de atención. Enferm. Univ. 2015, 12, 173–181.
Edsberg, L.E.; Langemo, D.; Baharestani, M.M.; Posthauer, M.E.; Goldberg, M. Unavoidable Pressure Injury: State of the Science and Consensus Outcomes. J. Wound Ostomy Cont. Nurs. Off. Publ. Wound Ostomy Cont. Nurses Soc. 2014, 41, 313–334.
Allman, R.M.; Goode, P.S.; Patrick, M.M.; Burst, N.; Bartolucci, A.A. Pressure Ulcer Risk Factors among Hospitalized Patients with Activity Limitation. JAMA 1995, 273, 865–870.
Bereded, D.T.; Salih, M.H.; Abebe, A.E. Prevalence and Risk Factors of Pressure Ulcer in Hospitalized Adult Patients; a Single Center Study from Ethiopia. BMC Res. Notes 2018, 11, 847.
Graves, N.; Birrell, F.; Whitby, M. Effect of Pressure Ulcers on Length of Hospital Stay. Infect. Control Hosp. Epidemiol. 2005, 26, 293–297.
Manzano, F.; Pérez-Pérez, A.M.; Martínez-Ruiz, S.; Garrido-Colmenero, C.; Roldan, D.; Jiménez-Quintana, M.D.M.; Sánchez-Cantalejo, E.; Colmenero, M. Hospital-Acquired Pressure Ulcers and Risk of Hospital Mortality in Intensive Care Patients on Mechanical Ventilation. J. Eval. Clin. Pract. 2014, 20, 362–368.
Chaves, F.; Garnacho-Montero, J.; Del Pozo, J.L.; Bouza, E.; Capdevila, J.A.; de Cueto, M.; Domínguez, M.Á.; Esteban, J.; Fernández-Hidalgo, N.; Fernández Sampedro, M.; et al. Diagnosis and Treatment of Catheter-Related Bloodstream Infection: Clinical Guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology and (SEIMC) and the Spanish Society of Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC). Med. Intensiv. 2018, 42, 5–36.
Smit, J.M.; Raadsen, R.; Blans, M.J.; Petjak, M.; Van de Ven, P.M.; Tuinman, P.R. Bedside Ultrasound to Detect Central Venous Catheter Misplacement and Associated Iatrogenic Complications: A Systematic Review and Meta-Analysis. Crit. Care 2018, 22, 65.
Fischer, M.; William, T.; Wohlrab, J. Skin Diseases in Intensive Care Medicine. J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG 2009, 7, 108–115.
Akiki, R.K.; Anand, R.S.; Borrelli, M.; Sarkar, I.N.; Liu, P.Y.; Chen, E.S. Predicting Open Wound Mortality in the ICU Using Machine Learning. J. Emerg. Crit. Care Med. 2021, 5, 13.
Cox, J. Predictors of Pressure Ulcers in Adult Critical Care Patients. Am. J. Crit. Care Off. Publ. Am. Assoc. Crit. Care Nurses 2011, 20, 364–375.
Niedźwiedź, I.; Waśko, A.; Pawłat, J.; Polak-Berecka, M. The State of Research on Antimicrobial Activity of Cold Plasma. Pol. J. Microbiol. 2019, 68, 153–164.
VON Woedtke, T.; Schmidt, A.; Bekeschus, S.; Wende, K.; Weltmann, K.-D. Plasma Medicine: A Field of Applied Redox Biology. In Vivo 2019, 33, 1011–1026.
Bernhardt, T.; Semmler, M.L.; Schäfer, M.; Bekeschus, S.; Emmert, S.; Boeckmann, L. Plasma Medicine: Applications of Cold Atmospheric Pressure Plasma in Dermatology. Oxidative Med. Cell. Longev. 2019, 2019, e3873928.
Dubuc, A.; Monsarrat, P.; Virard, F.; Merbahi, N.; Sarrette, J.-P.; Laurencin-Dalicieux, S.; Cousty, S. Use of Cold-Atmospheric Plasma in Oncology: A Concise Systematic Review. Ther. Adv. Med. Oncol. 2018, 10, 1758835918786475.
Grant, M.J.; Booth, A. A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies. Health Inf. Libr. J. 2009, 26, 91–108.
Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A Scale for the Quality Assessment of Narrative Review Articles. Res. Integr. Peer Rev. 2019, 4, 5.
Martusevich, A.K.; Surovegina, A.V.; Bocharin, I.V.; Nazarov, V.V.; Minenko, I.A.; Artamonov, M.Y. Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities. Antioxidant 2022, 11, 1262.
Friedman, P.C. Cold Atmospheric Pressure (Physical) Plasma in Dermatology: Where Are We Today? Int. J. Dermatol. 2020, 59, 1171–1184.
Braný, D.; Dvorská, D.; Halašová, E.; Škovierová, H. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. Int. J. Mol. Sci. 2020, 21, 2932.
Nguyen, D.B.; Lee, W.G. Effects of Ambient Gas on Cold Atmospheric Plasma Discharge in the Decomposition of Trifluoromethane. RSC Adv. 2016, 6, 26505–26513.
Hoffmann, C.; Berganza, C.; Zhang, J. Cold Atmospheric Plasma: Methods of Production and Application in Dentistry and Oncology. Med. Gas Res. 2013, 3, 21.
Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound Repair and Regeneration. Nature 2008, 453, 314–321.
Velnar, T.; Bailey, T.; Smrkolj, V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542.
Haertel, B.; von Woedtke, T.; Weltmann, K.-D.; Lindequist, U. Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing. Biomol. Ther. 2014, 22, 477–490.
Duchesne, C.; Banzet, S.; Lataillade, J.-J.; Rousseau, A.; Frescaline, N. Cold Atmospheric Plasma Modulates Endothelial Nitric Oxide Synthase Signalling and Enhances Burn Wound Neovascularisation. J. Pathol. 2019, 249, 368–380.
García-Alcantara, E.; López-Callejas, R.; Morales-Ramírez, P.R.; Peña-Eguiluz, R.; Fajardo-Muñoz, R.; Mercado-Cabrera, A.; Barocio, S.R.; Valencia-Alvarado, R.; Rodríguez-Méndez, B.G.; Muñoz-Castro, A.E.; et al. Accelerated Mice Skin Acute Wound Healing in Vivo by Combined Treatment of Argon and Helium Plasma Needle. Arch. Med. Res. 2013, 44, 169–177.
Amini, M.R.; Sheikh Hosseini, M.; Fatollah, S.; Mirpour, S.; Ghoranneviss, M.; Larijani, B.; Mohajeri-Tehrani, M.R.; Khorramizadeh, M.R. Beneficial Effects of Cold Atmospheric Plasma on Inflammatory Phase of Diabetic Foot Ulcers; a Randomized Clinical Trial. J. Diabetes Metab. Disord. 2020, 19, 895–905.
Xu, Z.; Shen, J.; Zhang, Z.; Ma, J.; Ma, R.; Zhao, Y.; Sun, Q.; Qian, S.; Zhang, H.; Ding, L.; et al. Inactivation Effects of Non-Thermal Atmospheric-Pressure Helium Plasma Jet on Staphylococcus Aureus Biofilms. Plasma Process. Polym. 2015, 12, 827–835.
Xu, G.-M.; Shi, X.-M.; Cai, J.-F.; Chen, S.-L.; Li, P.; Yao, C.-W.; Chang, Z.-S.; Zhang, G.-J. Dual Effects of Atmospheric Pressure Plasma Jet on Skin Wound Healing of Mice. Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. 2015, 23, 878–884.
Gao, J.; Wang, L.; Xia, C.; Yang, X.; Cao, Z.; Zheng, L.; Ko, R.; Shen, C.; Yang, C.; Cheng, C. Cold Atmospheric Plasma Promotes Different Types of Superficial Skin Erosion Wounds Healing. Int. Wound J. 2019, 16, 1103–1111.
Ernst, J.; Tanyeli, M.; Borchardt, T.; Ojugo, M.; Helmke, A.; Viöl, W.; Schilling, A.F.; Felmerer, G. Effect on Healing Rates of Wounds Treated with Direct Cold Atmospheric Plasma: A Case Series. J. Wound Care 2021, 30, 904–914.
Heinlin, J.; Zimmermann, J.L.; Zeman, F.; Bunk, W.; Isbary, G.; Landthaler, M.; Maisch, T.; Monetti, R.; Morfill, G.; Shimizu, T.; et al. Randomized Placebo-Controlled Human Pilot Study of Cold Atmospheric Argon Plasma on Skin Graft Donor Sites. Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. 2013, 21, 800–807.
Frescaline, N.; Duchesne, C.; Favier, M.; Onifarasoaniaina, R.; Guilbert, T.; Uzan, G.; Banzet, S.; Rousseau, A.; Lataillade, J.-J. Physical Plasma Therapy Accelerates Wound Re-Epithelialisation and Enhances Extracellular Matrix Formation in Cutaneous Skin Grafts. J. Pathol. 2020, 252, 451–464.
Betancourt-Ángeles, M.; Peña-Eguiluz, R.; López-Callejas, R.; Domínguez-Cadena, N.A.; Mercado-Cabrera, A.; Muñoz-Infante, J.; Rodríguez-Méndez, B.G.; Valencia-Alvarado, R.; Moreno-Tapia, J.A. Treatment in the Healing of Burns with a Cold Plasma Source. Int. J. Burns Trauma 2017, 7, 142–146.
Becker, D.; Tozo, T.C.; Batista, S.S.; Mattos, A.L.; Silva, M.C.B.; Rigon, S.; Laynes, R.L.; Salomão, E.C.; Hubner, K.D.G.; Sorbara, S.G.B.; et al. Pressure Ulcers in ICU Patients: Incidence and Clinical and Epidemiological Features: A Multicenter Study in Southern Brazil. Intensive Crit. Care Nurs. 2017, 42, 55–61.
Nguyen, T.X.; Nguyen, D.H.; Ho-Man, T.P.; Bui, V.D.A.; Phan, P.N. Cold Plasmamed Beam as a Supporting Treatment of Soft Tissue Injuries in Severe COVID-19 Patients: A Preliminary Report. Med. Devices Auckl. N. Z. 2022, 15, 277–283.
Zanza, C.; Thangathurai, J.; Audo, A.; Muir, H.A.; Candelli, M.; Pignataro, G.; Thangathurai, D.; Cicchinelli, S.; Racca, F.; Longhitano, Y.; et al. Oxidative stress in critical care and vitamins supplement therapy: “a beneficial care enhancing”. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7703–7712.
Zhao, S.; Han, R.; Li, Y.; Lu, C.; Chen, X.; Xiong, Z.; Mao, X. Investigation of the Mechanism of Enhanced and Directed Differentiation of Neural Stem Cells by an Atmospheric Plasma Jet: A Gene-Level Study. J. Appl. Phys. 2019, 125, 163301.
Yiu, G.; He, Z. Glial Inhibition of CNS Axon Regeneration. Nat. Rev. Neurosci. 2006, 7, 617–627.
Katiyar, K.S.; Lin, A.; Fridman, A.; Keating, C.E.; Cullen, D.K.; Miller, V. Non-Thermal Plasma Accelerates Astrocyte Regrowth and Neurite Regeneration Following Physical Trauma In Vitro. Appl. Sci. 2019, 9, 3747.
Longhitano, Y.; Zanza, C.; Thangathurai, D.; Taurone, S.; Kozel, D.; Racca, F.; Audo, A.; Ravera, E.; Migneco, A.; Piccioni, A.; et al. Gut Alterations in Septic Patients: A Biochemical Literature Review. Rev. Recent Clin. Trials 2020, 15, 289–297.
Cotter, J.J.; Maguire, P.; Soberon, F.; Daniels, S.; O’Gara, J.P.; Casey, E. Disinfection of Meticillin-Resistant Staphylococcus Aureus and Staphylococcus Epidermidis Biofilms Using a Remote Non-Thermal Gas Plasma. J. Hosp. Infect. 2011, 78, 204–207.
Maisch, T.; Shimizu, T.; Li, Y.-F.; Heinlin, J.; Karrer, S.; Morfill, G.; Zimmermann, J.L. Decolonisation of MRSA, S. Aureus and E. Coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro. PLoS ONE 2012, 7, e34610.
Isbary, G.; Morfill, G.; Schmidt, H.U.; Georgi, M.; Ramrath, K.; Heinlin, J.; Karrer, S.; Landthaler, M.; Shimizu, T.; Steffes, B.; et al. A First Prospective Randomized Controlled Trial to Decrease Bacterial Load Using Cold Atmospheric Argon Plasma on Chronic Wounds in Patients. Br. J. Dermatol. 2010, 163, 78–82.
Gallant-Behm, C.L.; Yin, H.Q.; Liu, S.; Heggers, J.P.; Langford, R.E.; Olson, M.E.; Hart, D.A.; Burrell, R.E. Comparison of in Vitro Disc Diffusion and Time Kill-Kinetic Assays for the Evaluation of Antimicrobial Wound Dressing Efficacy. Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. 2005, 13, 412–421.
Malone, M.; Bjarnsholt, T.; McBain, A.J.; James, G.A.; Stoodley, P.; Leaper, D.; Tachi, M.; Schultz, G.; Swanson, T.; Wolcott, R.D. The Prevalence of Biofilms in Chronic Wounds: A Systematic Review and Meta-Analysis of Published Data. J. Wound Care 2017, 26, 20–25.
Isbary, G.; Heinlin, J.; Shimizu, T.; Zimmermann, J.L.; Morfill, G.; Schmidt, H.-U.; Monetti, R.; Steffes, B.; Bunk, W.; Li, Y.; et al. Successful and Safe Use of 2° Min Cold Atmospheric Argon Plasma in Chronic Wounds: Results of a Randomized Controlled Trial. Br. J. Dermatol. 2012, 167, 404–410.
Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal Plasma--A Tool for Decontamination and Disinfection. Biotechnol. Adv. 2015, 33, 1108–1119.
Mai-Prochnow, A.; Bradbury, M.; Ostrikov, K.; Murphy, A.B. Pseudomonas Aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine. PLoS ONE 2015, 10, e0130373.
Krewing, M.; Jarzina, F.; Dirks, T.; Schubert, B.; Benedikt, J.; Lackmann, J.-W.; Bandow, J.E. Plasma-Sensitive Escherichia Coli Mutants Reveal Plasma Resistance Mechanisms. J. R. Soc. Interface 2019, 16, 20180846.
Mai-Prochnow, A.; Clauson, M.; Hong, J.; Murphy, A.B. Gram Positive and Gram Negative Bacteria Differ in Their Sensitivity to Cold Plasma. Sci. Rep. 2016, 6, 38610.
Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Jones, R.N. Antimicrobial Susceptibility of Gram-Negative Organisms Isolated from Patients Hospitalized in Intensive Care Units in United States and European Hospitals (2009–2011). Diagn. Microbiol. Infect. Dis. 2014, 78, 443–448.
Daeschlein, G.; Scholz, S.; Ahmed, R.; von Woedtke, T.; Haase, H.; Niggemeier, M.; Kindel, E.; Brandenburg, R.; Weltmann, K.-D.; Juenger, M. Skin Decontamination by Low-Temperature Atmospheric Pressure Plasma Jet and Dielectric Barrier Discharge Plasma. J. Hosp. Infect. 2012, 81, 177–183.
Joshi, D.; Ahammad, G.V.P.S.Z.; Kar, S.; Sreekrishnan, T.R. Development and Optimization of Low Power Non-Thermal Plasma Jet Operational Parameters for Treating Dyes and Emerging Contaminants. Plasma Sci. Technol. 2022, 24, 105501.
Das, S.; Gajula, V.; Mohapatra, S.; Singh, G.; Kar, S. Role of Cold Atmospheric Plasma in Microbial Inactivation and the Factors Affecting Its Efficacy. Health Sci. Rev. 2022, 4, 100037.
Das, S.; Gajula, V.; Mohapatra, S.; Kar, S.; Bhatt, S.; Gautam, H.; Singh, G.; Kapil, A.; Das, B.; Sood, S.; et al. Antimicrobial Efficacy of Argon Cold Atmospheric Pressure Plasma Jet on Clinical Isolates of Multidrug-Resistant ESKAPE Bacteria. In Proceedings of the IEEE Transactions on Radiation and Plasma Medical Sciences, Rome, Italy, 28 May–1 June 2023.
Abbasi, E.; Mehrabadi, J.F.; Nourani, M.; Namini, Y.N.; Mohammadi, S.; Esmaeili, D.; Abbasi, A. Evaluation of Cold Atmospheric-Pressure Plasma against Burn Wound Infections and Gene Silencing. Iran. J. Microbiol. 2021, 13, 544–552.
Stratmann, B.; Costea, T.-C.; Nolte, C.; Hiller, J.; Schmidt, J.; Reindel, J.; Masur, K.; Motz, W.; Timm, J.; Kerner, W.; et al. Effect of Cold Atmospheric Plasma Therapy vs. Standard Therapy Placebo on Wound Healing in Patients With Diabetic Foot Ulcers: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2010411.
Gatto, V.; Scopetti, M.; La Russa, R.; Santurro, A.; Cipolloni, L.; Viola, R.V.; Di Sanzo, M.; Frati, P.; Fineschi, V. Advanced Loss Eventuality Assessment and Technical Estimates: An Integrated Approach for Management of Healthcare-Associated Infections. Curr. Pharm. Biotechnol. 2019, 20, 625–634.
Schleusser, S.; Schulz, L.; Song, J.; Deichmann, H.; Griesmann, A.-C.; Stang, F.H.; Mailaender, P.; Kraemer, R.; Kleemann, M.; Kisch, T. A Single Application of Cold Atmospheric Plasma (CAP) Improves Blood Flow Parameters in Chronic Wounds. Microcirculation 2022, 29, e12754.
Li, S.; Renick, P.; Senkowsky, J.; Nair, A.; Tang, L. Diagnostics for Wound Infections. Adv. Wound Care 2021, 10, 317–327.
La Russa, R.; Ferracuti, S. Clinical Risk Management: As Modern Tool for Prevention and Management of Care and Prevention Occupational Risk. Int. J. Environ. Res. Public Health 2022, 19, 831.
Klämpfl, T.G.; Isbary, G.; Shimizu, T.; Li, Y.-F.; Zimmermann, J.L.; Stolz, W.; Schlegel, J.; Morfill, G.E.; Schmidt, H.-U. Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest. Appl. Environ. Microbiol. 2012, 78, 5077–5082.
Izadjoo, M.; Zack, S.; Kim, H.; Skiba, J. Medical applications of cold atmospheric plasma: State of the science. J. Wound Care 2018, 27 (Suppl. 9), S4–S10.
Ehlbeck, J.; Schnabel, U.; Polak, M.; Winter, J.; von Woedtke, T.; Brandenburg, R.; von dem Hagen, T.; Weltmann, K.-D. Low Temperature Atmospheric Pressure Plasma Sources for Microbial Decontamination. J. Phys. Appl. Phys. 2010, 44, 013002.
La Russa, R.; Viola, R.V.; D’Errico, S.; Aromatario, M.; Maiese, A.; Anibaldi, P.; Napoli, C.; Frati, P.; Fineschi, V. Analysis of Inadequacies in Hospital Care through Medical Liability Litigation. Int. J. Environ. Res. Public Health 2021, 18, 3425.
Copyright (c) 2024 Muntadher Ghanem Jassim, Hussein Ali Mujbil, Azhar Awad Jabr, Munif, Mutab Jarad, Karar Khazal Jarad, Hassan Ali Naeem, Ismail Nouri

This work is licensed under a Creative Commons Attribution 4.0 International License.














